Subsystem decompositions of quantum circuits and processes with indefinite causal order

Julian Wechs
joint work with Cyril Branciard and Ognyan Oreshkov

CANA Seminar — Marseille

10 October 2023

Introduction

usual understanding of causality: events are embedded into a causal order
usual understanding of causality: events are embedded into a causal order

Introduction

- usual understanding of causality: events are embedded into a causal order

- usual understanding of causality: events are embedded into a causal order

- in recent years: increasing interest in quantum causal relations
- usual understanding of causality: events are embedded into a causal order

- in recent years: increasing interest in quantum causal relations
- abstract framework for quantum causal relations: process matrix formalism ${ }^{1}$
\hookrightarrow allows for processes that are not compatible with a well-defined causal order!

[^0]- relevant from a fundamental point of view (quantum foundations, quantum gravity)
- relevant from a fundamental point of view (quantum foundations, quantum gravity)
- relevant for quantum information theory
\hookrightarrow goes beyond the standard paradigm of quantum circuits

\hookrightarrow new possibilities for quantum computing?

Introduction

- central open question: physical realisability of indefinite causal order?

Introduction

- central open question: physical realisability of indefinite causal order?
- some processes with indefinite causal order are believed to have a physical realisation in standard quantum theory \hookrightarrow optical laboratory experiments ${ }^{1,2,3,4,5,6,7}$
\hookrightarrow controversy: Genuine "realisations" or "simulations" of indefinite causal order?

[^1]
Introduction

- central open question: physical realisability of indefinite causal order?
- some processes with indefinite causal order are believed to have a physical realisation in standard quantum theory
\hookrightarrow optical laboratory experiments ${ }^{1,2,3,4,5,6,7}$
\hookrightarrow controversy: Genuine "realisations" or "simulations" of indefinite causal order?
\Rightarrow In which precise sense does indefinite causal order exist within standard quantum theory?

[^2]Rigorous approach:

| Standard | \Longleftrightarrow | Change of
 quantum
 description |
| :---: | :---: | :---: | | Description as |
| :---: |
| subsystems in |
| quantum circuits |\quad| order process |
| :---: |

Rigorous approach:

| Standard | \Longleftrightarrow | Change of
 quantum
 description |
| :---: | :---: | :---: | | Description as |
| :---: |
| subsystems in |
| quantum circuits |\quad| order process |
| :---: |

Introduction

Rigorous approach:

Standard
quantum
description

Change of subsystems in quantum circuits

- general framework to describe transformations between different subsystem decompositions of quantum circuits
- application to processes with indefinite causal order

Rigorous approach:

Standard quantum description

Change of

 subsystems in quantum circuitsDescription as indefinite causal order process

- general framework to describe transformations between different subsystem decompositions of quantum circuits
- application to processes with indefinite causal order
$\hookrightarrow J$. Wechs, C. Branciard, O. Oreshkov, Existence of processes violating causal inequalities on time-delocalised subsystems, Nat. Commun. 14, 1471 (2023)
\hookrightarrow J. Wechs, O. Oreshkov, Subsystem decompositions of quantum circuits and processes with indefinite causal order, in preparation (2023)
(1) The process matrix framework
(2) Physical realisability of indefinite causal order?
(3) Subsystem decompositions of quantum circuits
(4) Application to processes with indefinite causal order
(5) Conclusion and open questions

Indefinite causal order:

The process matrix framework ${ }^{1}$

- consider separate parties (Alice, Bob, ...)

The process matrix framework: General idea ${ }^{1}$

- consider separate parties (Alice, Bob, ...)
- locally described by quantum theory, but no a priori global causal order

- Alice receives an incoming quantum system
- performs a quantum operation (quantum channel, quantum measurement, ...)
\hookrightarrow obtains a (probabilistic) measurement outcome
- sends out an outgoing quantum system

Formally:

- incoming and outgoing quantum systems A_{I} (associated to Hilbert space $\mathcal{H}^{A_{I}}$) and A_{O} (associated to Hilbert space $\mathcal{H}^{A_{O}}$)

$$
\begin{gathered}
A_{I} \\
\left\{\mathcal{M}_{A}^{[a]}\right\}_{a} \\
\text { Alice } \\
\hline
\end{gathered}
$$

Formally:

- incoming and outgoing quantum systems A_{I} (associated to Hilbert space $\mathcal{H}^{A_{I}}$) and A_{O} (associated to Hilbert space $\mathcal{H}^{A_{O}}$)
- quantum instrument $\left\{\mathcal{M}_{A}^{[a]}\right\}_{a}, \quad a=1, \ldots, N$
\hookrightarrow probability associated to outcomes: $p(a)=\operatorname{Tr}\left(\mathcal{M}^{[a]}\left(\rho^{A_{I}}\right)\right)$
\hookrightarrow corresponding output state: $\mathcal{M}^{[a]}\left(\rho^{A_{I}}\right) / p(a) \in \mathcal{L}\left(\mathcal{H}^{A_{O}}\right)$

$$
\begin{aligned}
& {\left[\mathcal{M}_{A}^{[a]}: \mathcal{L}\left(\mathcal{H}^{A_{I}}\right) \rightarrow \mathcal{L}\left(\mathcal{H}^{A_{O}}\right) \quad\right. \text { completely positive, }} \\
& \left.\operatorname{Tr}\left(\sum_{a} \mathcal{M}_{A}^{[a]}\left(\rho^{A_{I}}\right)\right)=\operatorname{Tr}\left(\rho^{A_{I}}\right) \quad \forall \rho^{A_{I}} \in \mathcal{L}\left(\mathcal{H}^{A_{I}}\right)\right]
\end{aligned}
$$

Most general correlations: obtained by "generalised Born's rule"

$$
\begin{array}{r}
P(a, b)=\operatorname{Tr}\left[M_{A}^{[a]} \otimes M_{B}^{[b]} \cdot W\right] \\
{\left[\hookrightarrow M_{A}^{[a]} \in \mathcal{L}\left(\mathcal{H}^{A_{I}} \otimes \mathcal{H}^{A_{O}}\right): \text { Choi representation }{ }^{1}\right]}
\end{array}
$$

[^3]\[

$$
\begin{gathered}
A_{I}\left\{\mathcal{M}_{A}^{[a]}\right\}_{a} A_{O} \\
\text { Alice } \\
\hline B_{I}\left\{\mathcal{M}_{B}^{[b]}\right\}_{b} \\
\text { Bob }
\end{gathered}
$$
\]

Most general correlations: obtained by "generalised Born's rule"

$$
\begin{gathered}
P(a, b)=\operatorname{Tr}\left[M_{A}^{[a]} \otimes M_{B}^{[b]} \cdot W\right] \\
{\left[\hookrightarrow M_{A}^{[a]} \in \mathcal{L}\left(\mathcal{H}^{A_{I}} \otimes \mathcal{H}^{A_{O}}\right): \text { Choi representation }{ }^{1}\right]} \\
W \in \mathcal{L}\left(\mathcal{H}^{A_{I}} \otimes \mathcal{H}^{A_{O}} \otimes \mathcal{H}^{B_{I}} \otimes \mathcal{H}^{B_{O}}\right): \text { process matrix }
\end{gathered}
$$

$$
P(a, b)=\operatorname{Tr}\left[M_{A}^{[a]} \otimes M_{B}^{[b]} \cdot W\right]
$$

$W \in \mathcal{L}\left(\mathcal{H}^{A_{I}} \otimes \mathcal{H}^{A_{O}} \otimes \mathcal{H}^{B_{I}} \otimes \mathcal{H}^{B_{O}}\right)$: process matrix \hookrightarrow "physical resource" or "environment" that relates the parties

[^4]
$$
P(a, b)=\operatorname{Tr}\left[M_{A}^{[a]} \otimes M_{B}^{[b]} \cdot W\right]
$$

Only constraint: valid probabilities \Leftrightarrow process matrices must be:

- positive semidefinite: $W \geq 0$
- in the linear subspace of valid process matrices $W \in \mathcal{L}_{V} \subset \mathcal{L}\left(\mathcal{H}^{A_{I}} \otimes \mathcal{H}^{A_{O}} \otimes \mathcal{H}^{B_{I}} \otimes \mathcal{H}^{B_{O}}\right)$
- normalised: $\operatorname{Tr} W=d_{A_{O}} d_{B_{O}}$

[^5]
Examples for process matrices

$$
P(a, b)=\operatorname{Tr}\left[M_{A}^{[a]} \otimes M_{B}^{[b]} \cdot W\right]
$$

- state: no signaling between the parties

$$
P(a, b)=\operatorname{Tr}\left[M_{A}^{[a]} \otimes M_{B}^{[b]} \cdot W\right]
$$

- state: no signaling between the parties

- channel: one-way signaling from A to B

$$
P(a, b)=\operatorname{Tr}\left[M_{A}^{[a]} \otimes M_{B}^{[b]} \cdot W\right]
$$

- state: no signaling between the parties

- channel: one-way signaling from A to B

- more general possibilities...

Causally separable process matrices

- process matrices that do not allow Bob to signal to Alice \equiv standard quantum circuits with A before $B^{1,2}$

[^6]
Causally separable process matrices

- process matrices that do not allow Bob to signal to Alice \equiv standard quantum circuits with A before $B^{1,2}$

- process matrices that do not allow Alice to signal to Bob \equiv standard quantum circuits with B before A

[^7]
Causally separable process matrices

- process matrices that do not allow Bob to signal to Alice \equiv standard quantum circuits with A before $B^{1,2}$

- process matrices that do not allow Alice to signal to Bob \equiv standard quantum circuits with B before A
- probabilistic mixtures:

$$
W^{\text {sep }}=q \cdot W^{A \prec B}+(1-q) \cdot W^{B \prec A}, \quad q \in[0,1]
$$

\equiv causally separable process matrices ${ }^{3}$

[^8]
Causally nonseparable process matrices

- there are valid process matrices that are not causally separable! ${ }^{1,2}$

[^9]
Causally nonseparable process matrices

- there are valid process matrices that are not causally separable! ${ }^{1,2}$

- some causally nonseparable process matrices can generate correlations $P(a, b \mid x, y)$ that violate causal inequalities ${ }^{1,3}$

[^10]
Causally nonseparable process matrices

- there are valid process matrices that are not causally separable! ${ }^{1,2}$

- some causally nonseparable process matrices can generate correlations $P(a, b \mid x, y)$ that violate causal inequalities ${ }^{1,3}$
[Analogy: causal nonseparability \Leftrightarrow entanglement causal inequalities \Leftrightarrow Bell inequalities]

[^11]
Physical realisability of indefinite causal order?

Quantum switch ${ }^{1}$: fourpartite causally nonseparable process matrix ${ }^{2,3}$ (Alice + Bob + initial party + final party $)$

[^12]Quantum switch ${ }^{1}$: fourpartite causally nonseparable process matrix ${ }^{2,3}$ (Alice + Bob + initial party + final party $)$

- interpretation: quantum control of causal order

[^13]Quantum switch ${ }^{1}$: fourpartite causally nonseparable process matrix ${ }^{2,3}$ (Alice + Bob + initial party + final party $)$

- interpretation: quantum control of causal order
- initial party initialises a "target" qubit and a "control" qubit \hookrightarrow control qubit in state $|0\rangle$: Alice acts on target qubit before Bob

[^14]Quantum switch ${ }^{1}$: fourpartite causally nonseparable process matrix 2,3 (Alice + Bob + initial party + final party $)$

- interpretation: quantum control of causal order
- initial party initialises a "target" qubit and a "control" qubit \hookrightarrow control qubit in state $|1\rangle$: Bob acts on target qubit before Alice

[^15]Quantum switch ${ }^{1}$: fourpartite causally nonseparable process matrix ${ }^{2,3}$ (Alice + Bob + initial party + final party $)$

- interpretation: quantum control of causal order
- initial party initialises a "target" qubit and a "control" qubit \hookrightarrow control qubit in a superposition state $|c\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$: no well-defined causal order

[^16]

- information processing advantages for the switch have been identified (e.g. in query complexity ${ }^{1,2}$, communication complexity ${ }^{3}$)

[^17]

- information processing advantages for the switch have been identified (e.g. in query complexity ${ }^{1,2}$, communication complexity ${ }^{3}$)
- the quantum switch cannot violate a causal inequality ${ }^{4,5,6}$

[^18]In what physical situations does indefinite causal order occur?

In what physical situations does indefinite causal order occur?

- possible scenarios at the interface of quantum theory and gravity?
\hookrightarrow "gravitational quantum switch" ${ }^{1}$

[^19]In what physical situations does indefinite causal order occur?

- possible scenarios at the interface of quantum theory and gravity?
\hookrightarrow "gravitational quantum switch" ${ }^{1}$
- optical laboratory experiments ${ }^{2,3,4,5,6,7,8}$?

[^20]
Optical experiments for the quantum switch

\hookrightarrow interferometric experiments:

- control qubit: photon polarisation
- target qubit: another degree of freedom of the photon (e.g. orbital angular momentum)
- photon sent through an interferometer with polarising beam splitters (PBS) along two possible paths

Optical experiments:

\hookrightarrow temporal perspective: coherently controlled application of U_{A} and U_{B} at two possible times

\hookrightarrow debate in the community: Are such experiments genuine "realisations" or "simulations" of the quantum switch (see e.g. ${ }^{1,2,3}$)?

[^21]
Optical experiments:

Link between temporal, standard quantum description and abstract process matrix framework?

\downarrow

Optical experiments:

Link between temporal, standard quantum description and abstract process matrix framework?

\downarrow

\hookrightarrow related by a change of subsystems! (cf. ${ }^{1,2}$)

[^22]\hookrightarrow general framework to describe transformations between different subsystem decompositions of quantum circuits ${ }^{1}$
\hookrightarrow application to processes with indefinite causal order ${ }^{1}$

Subsystem decompositions of quantum circuits

Quantum circuits

- quantum circuit: Abstract description of time evolution in quantum theory

Quantum circuits

- quantum circuit: Abstract description of time evolution in quantum theory
\hookrightarrow quantum operations, represented by boxes, which are composed over quantum systems, in successive time steps

Quantum circuits

- quantum circuit: Abstract description of time evolution in quantum theory
\hookrightarrow quantum operations, represented by boxes, which are composed over quantum systems, in successive time steps

- closed circuit: Composition of all operations corresponds to the joint probability $P\left(j_{1}, j_{2}, j_{3}, j_{4}, j_{5}, j_{6}\right)$ of the measurement outcomes

Quantum subsystems

- composite quantum system: described by the tensor product of the Hilbert spaces of the individual systems

$$
\mathcal{H}^{Y_{1}} \otimes \mathcal{H}^{Y_{2}}
$$

Quantum subsystems

- composite quantum system: described by the tensor product of the Hilbert spaces of the individual systems

$$
\mathcal{H}^{Y_{1}} \otimes \mathcal{H}^{Y_{2}}
$$

- conversely: A quantum system Y can be divided into subsystems in different ways

Quantum subsystems

- conversely: A quantum system Y can be divided into subsystems in different ways

Quantum subsystems

- conversely: A quantum system Y can be divided into subsystems in different ways
- formally described through the choice of a tensor product structure, i.e., an isomorphism

$$
J: \mathcal{H}^{Y} \rightarrow \bigotimes_{i=1}^{n} \mathcal{H}^{Y_{n}}
$$

(with $\Pi_{i=1}^{n} \operatorname{dim} \mathcal{H}^{Y_{n}}=\operatorname{dim} \mathcal{H}^{Y}$).

Quantum subsystems

- conversely: A quantum system Y can be divided into subsystems in different ways
- formally described through the choice of a tensor product structure, i.e., an isomorphism

$$
J: \mathcal{H}^{Y} \rightarrow \bigotimes_{i=1}^{n} \mathcal{H}^{Y_{n}}
$$

(with $\Pi_{i=1}^{n} \operatorname{dim} \mathcal{H}^{Y_{n}}=\operatorname{dim} \mathcal{H}^{Y}$).
\hookrightarrow establishes a notion of locality on \mathcal{H}^{Y}, and defines a decomposition of the system Y into subsystems Y_{1}, \ldots, Y_{n}

"circuit operation" consisting of the tensor product of all operations \rightarrow acts on the joint Hilbert space of all systems in the circuit

Subsystem decompositions of quantum circuits

alternative subsystem decomposition \rightarrow isomorphism J defining another tensor factor decomposition of that joint Hilbert space

new (possibly cyclic) circuit description with operations acting on new (possibly time-delocalised ${ }^{1}$) systems
${ }^{1}$ O. Oreshkov, Quantum 3, 206 (2019)

Application to processes with indefinite causal order

Quantum processes as circuits with cycles

- quantum processes can be interpreted as circuits with cycles

Quantum processes as circuits with cycles

- quantum processes can be interpreted as circuits with cycles

- certain indefinite causal order processes can be related to a temporal circuit via a subsystem transformation

Example: The quantum switch

\hookrightarrow input and output systems $A_{I}, A_{O}, B_{I}, B_{O}$ in the process matrix description: Time-delocalised subsystems of the time-local systems in the temporal circuit

Example: The quantum switch

\hookrightarrow new subsystem description \equiv "fine-grained" process matrix perspective (need to compose over the systems $Y_{1}, Y_{2}, C_{1}^{\prime}, C_{2}$)

Certain processes that violate causal inequalities can be mapped to a temporal circuit through a subsystem change. ${ }^{1}$
\hookrightarrow example: the "Lugano process"(see e.g. ${ }^{2,3}$)

\hookrightarrow requires new types of time-delocalised systems
\hookrightarrow causal inequality violation with classical "time-delocalised variables" ${ }^{1}$

[^23]
Conclusion and open questions

Certain processes with indefinite causal order can be mapped to a standard, temporal quantum circuit through a subsystem change. In that sense, they have a realisation within standard physics.

Conclusion and open questions

Certain processes with indefinite causal order can be mapped to a standard, temporal quantum circuit through a subsystem change. In that sense, they have a realisation within standard physics.

- generalisations to other types of processes?

Conclusion and open questions

Certain processes with indefinite causal order can be mapped to a standard, temporal quantum circuit through a subsystem change. In that sense, they have a realisation within standard physics.

- generalisations to other types of processes?
- transformations between "causal perspectives" and link to quantum reference frames/quantum equivalence principle? ${ }^{1,2}$

[^24]
Conclusion and open questions

Certain processes with indefinite causal order can be mapped to a standard, temporal quantum circuit through a subsystem change. In that sense, they have a realisation within standard physics.

- generalisations to other types of processes?
- transformations between "causal perspectives" and link to quantum reference frames/quantum equivalence principle? ${ }^{1,2}$
- implications of this perspective on quantum information processing with indefinite causal structures?

[^25]
Thank you for your attention!

[^0]: ${ }^{1}$ O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

[^1]: ${ }^{1}$ L. M. Procopio et al., Nat. Commun. 6, 7913 (2015)
 ${ }^{2}$ G. Rubino et al., Sci. Adv.3, e1602589 (2017)
 ${ }^{3}$ K. Goswami et al., Phys. Rev. Lett. 121, 090503 (2018)
 ${ }^{4}$ K. Wei et al., Phys. Rev. Lett. 122, 120504 (2019)
 ${ }^{5}$ Y. Guo et al., Phys. Rev. Lett. 124, 030502 (2020)
 ${ }^{6}$ K. Goswami et al., Phys. Rev. Research 2, 033292 (2020)
 ${ }^{7}$ M. M. Taddei et al., PRX Quantum 2, 010320 (2021)

[^2]: ${ }^{1}$ L. M. Procopio et al., Nat. Commun. 6, 7913 (2015)
 ${ }^{2}$ G. Rubino et al., Sci. Adv.3, e1602589 (2017)
 ${ }^{3}$ K. Goswami et al., Phys. Rev. Lett. 121, 090503 (2018)
 ${ }^{4}$ K. Wei et al., Phys. Rev. Lett. 122, 120504 (2019)
 ${ }^{5}$ Y. Guo et al., Phys. Rev. Lett. 124, 030502 (2020)
 ${ }^{6}$ K. Goswami et al., Phys. Rev. Research 2, 033292 (2020)
 ${ }^{7}$ M. M. Taddei et al., PRX Quantum 2, 010320 (2021)

[^3]: ${ }^{1}$ M.D.Choi, Linear Algebra Appl. 10, 285 (1975)

[^4]: ${ }^{1}$ O. Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

[^5]: ${ }^{1}$ O. Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

[^6]: ${ }^{1}$ G. Chiribella, G. M. D'Ariano, P. Perinotti, Phys. Rev. A 80, 022339 (2009)
 ${ }^{2}$ G. Gutoski, J. Watrous, Proceedings of 39th ACM STOC, 565-574 (2007)

[^7]: ${ }^{1}$ G. Chiribella, G. M. D'Ariano, P. Perinotti, Phys. Rev. A 80, 022339 (2009)
 ${ }^{2}$ G. Gutoski, J. Watrous, Proceedings of 39th ACM STOC, 565-574 (2007)

[^8]: ${ }^{1}$ G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 80, 022339 (2009)
 ${ }^{2}$ G. Gutoski, J. Watrous, Proceedings of 39th ACM STOC, 565-574 (2007)
 ${ }^{3}$ O. Oreshkov, F.Costa, Č. Brukner, Nat. Commun. 3, 1092 (2012)

[^9]: ${ }^{1}$ O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)
 ${ }^{2}$ J. Wechs, A. Abbott, C. Branciard, New J. Phys. 21, 013027 (2019)

[^10]: ${ }^{1}$ O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)
 ${ }^{2}$ J. Wechs, A. Abbott, C. Branciard, New J. Phys. 21, 013027 (2019)
 ${ }^{3}$ C. Branciard et al., New J. Phys. 18, 013008 (2016)

[^11]: ${ }^{1}$ O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)
 ${ }^{2}$ J. Wechs, A. Abbott, C. Branciard, New J. Phys. 21, 013027 (2019)
 ${ }^{3}$ C. Branciard et al., New J. Phys. 18, 013008 (2016)

[^12]: ${ }^{1}$ G.Chiribella, G.M.D’Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)
 ${ }^{2}$ M.Araujo et al., New J. Phys. 17, 102001 (2015)
 ${ }^{3}$ O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

[^13]: ${ }^{1}$ G.Chiribella, G.M.D'Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)
 ${ }^{2}$ M.Araujo et al., New J. Phys. 17, 102001 (2015)
 ${ }^{3}$ O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

[^14]: ${ }^{1}$ G.Chiribella, G.M.D'Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)
 ${ }^{2}$ M.Araujo et al., New J. Phys. 17, 102001 (2015)
 ${ }^{3}$ O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

[^15]: ${ }^{1}$ G.Chiribella, G.M.D’Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)
 ${ }^{2}$ M.Araujo et al., New J. Phys. 17, 102001 (2015)
 ${ }^{3}$ O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

[^16]: ${ }^{1}$ G.Chiribella, G.M.D'Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)
 ${ }^{2}$ M.Araujo et al., New J. Phys. 17, 102001 (2015)
 ${ }^{3}$ O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

[^17]: ${ }^{1}$ G. Chiribella, Phys. Rev. A 86, 040301 (2012)
 ${ }^{2}$ M.Araújo, F.Costa, Č.Brukner, Phys. Rev. Lett. 113, 250402 (2014)
 ${ }^{3}$ P.A.Guérin, A.Feix, M.Araújo, Č.Brukner, Phys. Rev. Lett. 117, 100502 (2016)

[^18]: ${ }^{1}$ G. Chiribella, Phys. Rev. A 86, 040301 (2012)
 ${ }^{2}$ M.Araújo, F.Costa, Č.Brukner, Phys. Rev. Lett. 113, 250402 (2014)
 ${ }^{3}$ P.A.Guérin, A.Feix, M.Araújo, Č.Brukner, Phys. Rev. Lett. 117, 100502 (2016)
 ${ }^{4}$ M.Araujo et al., New J. Phys. 17, 102001 (2015)
 ${ }^{5}$ O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)
 ${ }^{6}$ J. Wechs, H. Dourdent, A. Abbott, C. Branciard, PRX Quantum 2, 030335 (2021)

[^19]: ${ }^{1}$ M.Zych, F.Costa, I.Pikovski, Č.Brukner, Nat. Commun. 10, 3772 (2019)

[^20]: ${ }^{1}$ M.Zych, F.Costa, I.Pikovski, Č.Brukner, Nat. Commun. 10, 3772 (2019)
 ${ }^{2}$ L. M. Procopio et al., Nat. Commun. 6, 7913 (2015)
 ${ }^{3}$ G. Rubino et al., Sci. Adv.3, e1602589 (2017)
 ${ }^{4}$ K. Goswami et al., Phys. Rev. Lett. 121, 090503 (2018)
 ${ }^{5}$ K. Wei et al., Phys. Rev. Lett. 122, 120504 (2019)
 ${ }^{6}$ Y. Guo et al., Phys. Rev. Lett. 124, 030502 (2020)
 ${ }^{7}$ K. Goswami et al., Phys. Rev. Research 2, 033292 (2020)
 ${ }^{8}$ M. M. Taddei et al., PRX Quantum 2, 010320 (2021)

[^21]: ${ }^{1}$ O. Oreshkov, Quantum 3, 206 (2019)
 ${ }^{2}$ N. Paunkovic, M. Vojinovic, Quantum 4, 275 (2020)
 ${ }^{3}$ V. Vilasini, R. Renner, arXiv:2203.11245 [quant-ph]

[^22]: ${ }^{1}$ O. Oreshkov, Quantum 3, 206 (2019)
 2 J. Wechs, C. Branciard, O. Oreshkov, Nat. Commun. 14, 1471 (2023)

[^23]: ${ }^{1}$ J.Wechs, C.Branciard, O.Oreshkov, Nat. Commun. 14, 1471 (2023)
 ${ }^{2}$ Ä. Baumeler, S.Wolf, New J. Phys. 18, 013036 (2016)
 ${ }^{3}$ M.Araújo, A.Feix, M.Navascués, Č.Brukner, Quantum 1, 10 (2017).

[^24]: ${ }^{1}$ E.Castro-Ruiz, F.Giacomini, A.Belenchia, Č. Brukner, Nat. Commun. 11, 2672 (2020)
 ${ }^{2}$ L.Hardy, arXiv:1903.01289 [quant-ph]

[^25]: ${ }^{1}$ E.Castro-Ruiz, F.Giacomini, A.Belenchia, Č. Brukner, Nat. Commun. 11, 2672 (2020)
 ${ }^{2}$ L. Hardy, arXiv:1903.01289 [quant-ph]

