Subsystem decompositions of quantum circuits and processes with indefinite causal order

Julian Wechs

joint work with Cyril Branciard and Ognyan Oreshkov

CANA Seminar — Marseille

10 October 2023

usual understanding of causality: events are embedded into a $\ensuremath{\textbf{causal}}$ order

Introduction

usual understanding of causality: events are embedded into a $\ensuremath{\textbf{causal}}$ order

• usual understanding of causality: events are embedded into a causal order

• usual understanding of causality: events are embedded into a causal order

• in recent years: increasing interest in quantum causal relations

• usual understanding of causality: events are embedded into a causal order

- in recent years: increasing interest in **quantum causal** relations
- abstract framework for quantum causal relations: process matrix formalism¹

 \hookrightarrow allows for processes that are not compatible with a well-defined causal order!

¹O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

• relevant from a fundamental point of view (quantum foundations, quantum gravity)

- relevant from a fundamental point of view (quantum foundations, quantum gravity)
- relevant for quantum information theory

 \hookrightarrow goes beyond the standard paradigm of quantum circuits

 \hookrightarrow new possibilities for quantum computing?

• central open question: physical realisability of indefinite causal order?

- central open question: physical realisability of indefinite causal order?
- some processes with indefinite causal order are believed to have a physical realisation in standard quantum theory

 \hookrightarrow optical laboratory experiments^{1,2,3,4,5,6,7}

 \hookrightarrow controversy: Genuine "realisations" or "simulations" of indefinite causal order?

¹L. M. Procopio et al., Nat. Commun. 6, 7913 (2015)

²G. Rubino et al., Sci. Adv.3, e1602589 (2017)

³K. Goswami et al., Phys. Rev. Lett. 121, 090503 (2018)

⁴K. Wei et al., Phys. Rev. Lett. 122, 120504 (2019)

⁵Y. Guo et al., Phys. Rev. Lett. 124, 030502 (2020)

⁶K. Goswami et al., Phys. Rev. Research 2, 033292 (2020)

⁷M. M. Taddei et al., PRX Quantum 2, 010320 (2021)

- central open question: physical realisability of indefinite causal order?
- some processes with indefinite causal order are believed to have a physical realisation in standard quantum theory

 \hookrightarrow optical laboratory experiments^{1,2,3,4,5,6,7}

 \hookrightarrow controversy: Genuine "realisations" or "simulations" of indefinite causal order?

 \Rightarrow In which precise sense does indefinite causal order exist within standard quantum theory?

¹L. M. Procopio et al., Nat. Commun. 6, 7913 (2015)

²G. Rubino et al., Sci. Adv.3, e1602589 (2017)

³K. Goswami et al., Phys. Rev. Lett. 121, 090503 (2018)

⁴K. Wei et al., Phys. Rev. Lett. 122, 120504 (2019)

⁵Y. Guo et al., Phys. Rev. Lett. 124, 030502 (2020)

⁶K. Goswami et al., Phys. Rev. Research 2, 033292 (2020)

⁷M. M. Taddei et al., PRX Quantum 2, 010320 (2021)

Standard quantum description ←→ Change of subsystems in quantum circuits

Description as indefinite causal order process

Standard quantum description ←→ Change of subsystems in quantum circuits

Description as indefinite causal order process

Standard quantum description ←→ Change of subsystems in quantum circuits

Description as indefinite causal order process

- general framework to describe transformations between different subsystem decompositions of quantum circuits
- application to processes with indefinite causal order

- different subsystem decompositions of quantum circuits
- application to processes with indefinite causal order

 \hookrightarrow J. Wechs, C. Branciard, O. Oreshkov, Existence of processes violating causal inequalities on time-delocalised subsystems, Nat. Commun. 14, 1471 (2023)

 \hookrightarrow J. Wechs, O. Oreshkov, Subsystem decompositions of quantum circuits and processes with indefinite causal order, in preparation (2023)

2 Physical realisability of indefinite causal order?

3 Subsystem decompositions of quantum circuits

4 Application to processes with indefinite causal order

5 Conclusion and open questions

Indefinite causal order: The process matrix framework¹

¹O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

The process matrix framework: General idea¹

• consider separate parties (Alice, Bob, ...)

¹O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

The process matrix framework: General idea¹

- consider separate parties (Alice, Bob, ...)
- **locally** described by quantum theory, but no a priori **global** causal order

¹O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

The process matrix framework: Local quantum theory

- Alice receives an incoming quantum system
- performs a quantum operation (quantum channel, quantum measurement, ...)

 \hookrightarrow obtains a (probabilistic) measurement outcome

sends out an outgoing quantum system

The process matrix framework: Local quantum theory

$$\begin{array}{c|c} A_I & \mathcal{M}_A^{[a]} \\ A_I & A_O \\ Alice \end{array}$$

Formally:

• incoming and outgoing quantum systems A_I (associated to Hilbert space \mathcal{H}^{A_I}) and A_O (associated to Hilbert space \mathcal{H}^{A_O})

$$\begin{array}{c} A_I \left\{ \mathcal{M}_A^{[a]} \right\}_a \\ Alice \end{array} A_O$$

Formally:

- incoming and outgoing quantum systems A_I (associated to Hilbert space \mathcal{H}^{A_I}) and A_O (associated to Hilbert space \mathcal{H}^{A_O})
- quantum instrument $\{\mathcal{M}_A^{[a]}\}_a$, $a=1,\ldots,N$

 \hookrightarrow probability associated to outcomes: $p(a) = \operatorname{Tr}(\mathcal{M}^{[a]}(\rho^{A_I}))$

 \hookrightarrow corresponding output state: $\mathcal{M}^{[a]}(\rho^{A_I})/p(a) \in \mathcal{L}(\mathcal{H}^{A_O})$

$$\begin{split} [\mathcal{M}_{A}^{[a]} : \mathcal{L}(\mathcal{H}^{A_{I}}) \to \mathcal{L}(\mathcal{H}^{A_{O}}) \quad \text{completely positive,} \\ \operatorname{Tr} \left(\sum_{a} \mathcal{M}_{A}^{[a]}(\rho^{A_{I}}) \right) = \operatorname{Tr}(\rho^{A_{I}}) \quad \forall \rho^{A_{I}} \in \mathcal{L}(\mathcal{H}^{A_{I}})] \end{split}$$

The process matrix

Most general correlations: obtained by "generalised Born's rule"

$$P(a,b) = \operatorname{Tr}\left[M_A^{[a]} \otimes M_B^{[b]} \cdot W\right]$$

 $[\hookrightarrow M_A^{[a]} \in \mathcal{L}(\mathcal{H}^{A_I} \otimes \mathcal{H}^{A_O}): \text{ Choi representation}^1]$

¹M.D.Choi, Linear Algebra Appl. 10, 285 (1975)

The process matrix

Most general correlations: obtained by "generalised Born's rule"

$$P(a,b) = \operatorname{Tr}\left[M_A^{[a]} \otimes M_B^{[b]} \cdot W\right]$$

 $[\hookrightarrow M_A^{[a]} \in \mathcal{L}(\mathcal{H}^{A_I} \otimes \mathcal{H}^{A_O}): \text{ Choi representation}^1]$

 $W \in \mathcal{L}(\mathcal{H}^{A_I} \otimes \mathcal{H}^{A_O} \otimes \mathcal{H}^{B_I} \otimes \mathcal{H}^{B_O})$: process matrix

¹M.D.Choi, Linear Algebra Appl. 10, 285 (1975)

The process matrix¹

$$P(a,b) = \operatorname{Tr}\left[M_A^{[a]} \otimes M_B^{[b]} \cdot W\right]$$

 $W \in \mathcal{L}(\mathcal{H}^{A_I} \otimes \mathcal{H}^{A_O} \otimes \mathcal{H}^{B_I} \otimes \mathcal{H}^{B_O})$: process matrix \hookrightarrow "physical resource" or "environment" that relates the parties

¹O. Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

The process matrix¹

$$P(a,b) = \operatorname{Tr}\left[M_A^{[a]} \otimes M_B^{[b]} \cdot W\right]$$

Only constraint: valid probabilities \Leftrightarrow process matrices must be:

- positive semidefinite: $W \ge 0$
- in the linear subspace of valid process matrices $W \in \mathcal{L}_V \subset \mathcal{L}(\mathcal{H}^{A_I} \otimes \mathcal{H}^{A_O} \otimes \mathcal{H}^{B_I} \otimes \mathcal{H}^{B_O})$

• normalised:
$$\operatorname{Tr} W = d_{A_O} d_{B_O}$$

¹O. Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

Examples for process matrices

$$P(a,b) = \operatorname{Tr}\left[M_A^{[a]} \otimes M_B^{[b]} \cdot W\right]$$

• state: no signaling between the parties

Examples for process matrices

$$P(a,b) = \operatorname{Tr}\left[M_A^{[a]} \otimes M_B^{[b]} \cdot W\right]$$

• state: no signaling between the parties

• **channel**: one-way signaling from A to B

Examples for process matrices

$$P(a,b) = \operatorname{Tr}\left[M_A^{[a]} \otimes M_B^{[b]} \cdot W\right]$$

• state: no signaling between the parties

 \bullet channel: one-way signaling from A to B

• more general possibilities...

Causally separable process matrices

• process matrices that do not allow Bob to signal to Alice \equiv standard quantum circuits with A before $B^{1,2}$

¹G. Chiribella, G. M. D'Ariano, P. Perinotti, Phys. Rev. A 80, 022339 (2009)

²G. Gutoski, J. Watrous, Proceedings of 39th ACM STOC, 565-574 (2007)

Causally separable process matrices

• process matrices that do not allow Bob to signal to Alice \equiv standard quantum circuits with A before $B^{1,2}$

• process matrices that do not allow Alice to signal to Bob \equiv standard quantum circuits with *B* before *A*

¹G. Chiribella, G. M. D'Ariano, P. Perinotti, Phys. Rev. A 80, 022339 (2009)

²G. Gutoski, J. Watrous, Proceedings of 39th ACM STOC, 565-574 (2007)

Causally separable process matrices

• process matrices that do not allow Bob to signal to Alice \equiv standard quantum circuits with A before $B^{1,2}$

- process matrices that do not allow Alice to signal to Bob \equiv standard quantum circuits with B before A
- probabilistic mixtures:

$$W^{\mathsf{sep}} = q \cdot W^{A \prec B} + (1 - q) \cdot W^{B \prec A}, \quad q \in [0, 1]$$

\equiv causally separable process matrices³

¹G. Chiribella, G. M. D'Ariano, P. Perinotti, Phys. Rev. A 80, 022339 (2009)

²G. Gutoski, J. Watrous, Proceedings of 39th ACM STOC, 565-574 (2007)

³O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

Causally nonseparable process matrices

• there are valid process matrices that are not causally separable!^{1,2}

¹O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

²J. Wechs, A. Abbott, C. Branciard, New J. Phys. 21, 013027 (2019)

Causally nonseparable process matrices

• there are valid process matrices that are not causally separable!^{1,2}

• some causally nonseparable process matrices can generate correlations P(a, b|x, y) that violate causal inequalities^{1,3}

¹O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

²J. Wechs, A. Abbott, C. Branciard, New J. Phys. 21, 013027 (2019)

³C. Branciard et al., New J. Phys. 18, 013008 (2016)

Causally nonseparable process matrices

• there are valid process matrices that are not causally separable!^{1,2}

• some causally nonseparable process matrices can generate correlations P(a,b|x,y) that violate causal inequalities^{1,3}

[Analogy: causal nonseparability ⇔ entanglement causal inequalities ⇔ Bell inequalities]

¹O.Oreshkov, F.Costa, Č.Brukner, Nat. Commun. 3, 1092 (2012)

²J. Wechs, A. Abbott, C. Branciard, New J. Phys. 21, 013027 (2019)

³C. Branciard et al., New J. Phys. 18, 013008 (2016)

Physical realisability of indefinite causal order?
Quantum switch¹: fourpartite causally nonseparable process $matrix^{2,3}$ (Alice + Bob + initial party + final party)

¹G.Chiribella, G.M.D'Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)

²M.Araujo et al., New J. Phys. 17, 102001 (2015)

³O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

Quantum switch¹: fourpartite causally nonseparable process matrix^{2,3} (Alice + Bob + initial party + final party)

• interpretation: quantum control of causal order

¹G.Chiribella, G.M.D'Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)

²M.Araujo et al., New J. Phys. 17, 102001 (2015)

³O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

Quantum switch¹: fourpartite causally nonseparable process matrix^{2,3} (Alice + Bob + initial party + final party)

- interpretation: quantum control of causal order
- initial party initialises a "target" qubit and a "control" qubit

 \hookrightarrow control qubit in state $|0\rangle$: Alice acts on target qubit before Bob

¹G.Chiribella, G.M.D'Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)

²M.Araujo et al., New J. Phys. 17, 102001 (2015)

³O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

Quantum switch¹: fourpartite causally nonseparable process matrix^{2,3} (Alice + Bob + initial party + final party)

- interpretation: quantum control of causal order
- initial party initialises a "target" qubit and a "control" qubit

 \hookrightarrow control qubit in state $|1\rangle$: Bob acts on target qubit before Alice

¹G.Chiribella, G.M.D'Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)

²M.Araujo et al., New J. Phys. 17, 102001 (2015)

³O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

Quantum switch¹: fourpartite causally nonseparable process matrix^{2,3} (Alice + Bob + initial party + final party)

• interpretation: quantum control of causal order

• initial party initialises a "target" qubit and a "control" qubit \hookrightarrow control qubit in a **superposition state** $|c\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$: no <u>well-defined causal order</u>

¹G.Chiribella, G.M.D'Ariano, P.Perinotti, B.Valiron, Phys. Rev. A 88(2) (2013)

²M.Araujo et al., New J. Phys. 17, 102001 (2015)

³O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

 information processing advantages for the switch have been identified (e.g. in query complexity^{1,2}, communication complexity³)

¹G. Chiribella, Phys. Rev. A 86, 040301 (2012)

²M.Araújo, F.Costa, Č.Brukner, Phys. Rev. Lett. 113, 250402 (2014)

³P.A.Guérin, A.Feix, M.Araújo, Č.Brukner, Phys. Rev. Lett. 117, 100502 (2016)

- information processing advantages for the switch have been identified (e.g. in query complexity^{1,2}, communication complexity³)
- the quantum switch cannot violate a causal inequality^{4,5,6}

¹G. Chiribella, Phys. Rev. A 86, 040301 (2012)

²M.Araújo, F.Costa, Č.Brukner, Phys. Rev. Lett. 113, 250402 (2014)

³P.A.Guérin, A.Feix, M.Araújo, Č.Brukner, Phys. Rev. Lett. 117, 100502 (2016)

⁴M.Araujo et al., New J. Phys. 17, 102001 (2015)

⁵O. Oreshkov, C. Giarmatzi, New J. Phys. 18, 093020 (2016)

⁶J. Wechs, H. Dourdent, A. Abbott, C. Branciard, PRX Quantum 2, 030335 (2021)

Physical realisability of indefinite causal order?

In what physical situations does indefinite causal order occur?

Physical realisability of indefinite causal order?

In what physical situations does indefinite causal order occur?

- possible scenarios at the interface of quantum theory and gravity?
 - \hookrightarrow "gravitational quantum switch"¹

¹M.Zych, F.Costa, I.Pikovski, Č.Brukner, Nat. Commun. 10, 3772 (2019)

Physical realisability of indefinite causal order?

In what physical situations does indefinite causal order occur?

- possible scenarios at the interface of quantum theory and gravity?
 - \hookrightarrow "gravitational quantum switch"¹
- optical laboratory experiments^{2,3,4,5,6,7,8}?
- ¹M.Zych, F.Costa, I.Pikovski, Č.Brukner, Nat. Commun. 10, 3772 (2019)
- ²L. M. Procopio et al., Nat. Commun. 6, 7913 (2015)
- ³G. Rubino et al., Sci. Adv.3, e1602589 (2017)
- ⁴K. Goswami et al., Phys. Rev. Lett. 121, 090503 (2018)
- ⁵K. Wei et al., Phys. Rev. Lett. 122, 120504 (2019)
- $^{6}\text{Y}.$ Guo et al., Phys. Rev. Lett. 124, 030502 (2020)
- ⁷K. Goswami et al., Phys. Rev. Research 2, 033292 (2020)
- ⁸M. M. Taddei et al., PRX Quantum 2, 010320 (2021)

Optical experiments for the quantum switch

 \hookrightarrow interferometric experiments:

- control qubit: photon polarisation
- target qubit: another degree of freedom of the photon (e.g. orbital angular momentum)
- photon sent through an interferometer with polarising beam splitters (PBS) along two possible paths

Optical experiments: "Realisations" or "simulations"?

 \hookrightarrow temporal perspective: coherently controlled application of U_A and U_B at two possible times

 \hookrightarrow debate in the community: Are such experiments genuine "realisations" or "simulations" of the quantum switch (see e.g.^{1,2,3})?

¹O. Oreshkov, Quantum 3, 206 (2019)

²N. Paunkovic, M. Vojinovic, Quantum 4, 275 (2020)

³V. Vilasini, R. Renner, arXiv:2203.11245 [quant-ph]

Optical experiments: "Realisations" or "simulations"?

Link between temporal, standard quantum description and abstract process matrix framework?

Optical experiments: "Realisations" or "simulations"?

Link between temporal, standard quantum description and abstract process matrix framework?

\hookrightarrow related by a change of subsystems! (cf.^{1,2})

¹O. Oreshkov, Quantum 3, 206 (2019)

²J. Wechs, C. Branciard, O. Oreshkov, Nat. Commun. 14, 1471 (2023)

 \hookrightarrow general framework to describe transformations between different subsystem decompositions of quantum circuits^1

 \hookrightarrow application to processes with indefinite causal order 1

¹J. Wechs, O. Oreshkov, in preparation

• **quantum circuit**: Abstract description of time evolution in quantum theory

• quantum circuit: Abstract description of time evolution in quantum theory

 \hookrightarrow quantum operations, represented by boxes, which are composed over quantum systems, in successive time steps

• quantum circuit: Abstract description of time evolution in quantum theory

 \hookrightarrow quantum operations, represented by boxes, which are composed over quantum systems, in successive time steps

• closed circuit: Composition of all operations corresponds to the joint probability $P(j_1, j_2, j_3, j_4, j_5, j_6)$ of the measurement outcomes

• composite quantum system: described by the **tensor product** of the Hilbert spaces of the individual systems

• composite quantum system: described by the **tensor product** of the Hilbert spaces of the individual systems

• conversely: A quantum system Y can be divided into subsystems in different ways

• conversely: A quantum system Y can be divided into subsystems in different ways

- conversely: A quantum system Y can be divided into subsystems in different ways
- formally described through the choice of a **tensor product structure**, i.e., an isomorphism

$$J: \mathcal{H}^Y \to \bigotimes_{i=1}^n \mathcal{H}^{Y_n}$$

(with $\Pi_{i=1}^n \dim \mathcal{H}^{Y_n} = \dim \mathcal{H}^Y$).

- conversely: A quantum system Y can be divided into subsystems in different ways
- formally described through the choice of a **tensor product structure**, i.e., an isomorphism

$$J:\mathcal{H}^Y\to\bigotimes_{i=1}^n\mathcal{H}^{Y_n}$$

(with $\Pi_{i=1}^n \dim \mathcal{H}^{Y_n} = \dim \mathcal{H}^Y$).

 \hookrightarrow establishes a notion of locality on \mathcal{H}^Y , and defines a decomposition of the system Y into subsystems Y_1, \ldots, Y_n

"circuit operation" consisting of the tensor product of all operations \rightarrow acts on the joint Hilbert space of all systems in the circuit

alternative subsystem decomposition \to isomorphism J defining another tensor factor decomposition of that joint Hilbert space

new (possibly cyclic) circuit description with operations acting on new (possibly time-delocalised $^1)$ systems

¹O. Oreshkov, Quantum 3, 206 (2019)

Application to processes with indefinite causal order

Quantum processes as circuits with cycles

• quantum processes can be interpreted as circuits with cycles

=

Quantum processes as circuits with cycles

• quantum processes can be interpreted as circuits with cycles

• certain indefinite causal order processes can be related to a temporal circuit via a subsystem transformation

Example: The quantum switch

 \hookrightarrow input and output systems A_I , A_O , B_I , B_O in the process matrix description: **Time-delocalised subsystems** of the time-local systems in the temporal circuit

Example: The quantum switch

 \hookrightarrow new subsystem description \equiv "fine-grained" process matrix perspective (need to compose over the systems Y_1 , Y_2 , C'_1 , C_2)

Certain processes that violate causal inequalities can be mapped to a temporal circuit through a subsystem change. $^1\,$

 \hookrightarrow example: the "Lugano process"(see e.g.^{2,3})

 \hookrightarrow requires new types of time-delocalised systems

 \hookrightarrow causal inequality violation with classical "time-delocalised variables" 1

¹J.Wechs, C.Branciard, O.Oreshkov, Nat. Commun. 14, 1471 (2023)

²Ä.Baumeler, S.Wolf, New J. Phys. 18, 013036 (2016)

³M.Araújo, A.Feix, M.Navascués, Č.Brukner, Quantum 1, 10 (2017).

Certain processes with indefinite causal order can be mapped to a standard, temporal quantum circuit through a subsystem change. In that sense, they have a realisation within standard physics. Certain processes with indefinite causal order can be mapped to a standard, temporal quantum circuit through a subsystem change. In that sense, they have a realisation within standard physics.

• generalisations to other types of processes?

Certain processes with indefinite causal order can be mapped to a standard, temporal quantum circuit through a subsystem change. In that sense, they have a realisation within standard physics.

- generalisations to other types of processes?
- transformations between "causal perspectives" and link to quantum reference frames/quantum equivalence principle?^{1,2}

¹E.Castro-Ruiz, F.Giacomini, A.Belenchia, Č. Brukner, Nat. Commun. 11, 2672 (2020)

²L.Hardy, arXiv:1903.01289 [quant-ph]
Certain processes with indefinite causal order can be mapped to a standard, temporal quantum circuit through a subsystem change. In that sense, they have a realisation within standard physics.

- generalisations to other types of processes?
- transformations between "causal perspectives" and link to quantum reference frames/quantum equivalence principle?^{1,2}
- implications of this perspective on quantum information processing with indefinite causal structures?

¹E.Castro-Ruiz, F.Giacomini, A.Belenchia, Č. Brukner, Nat. Commun. 11, 2672 (2020)

²L.Hardy, arXiv:1903.01289 [quant-ph]

Thank you for your attention!