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Conjunctive grammars

A statement by Okhotin :
“Context-free grammars may be thought of as a logic for inductive
description of syntax in which the propositional connectives
available. . . are restricted to disjunction only.”

Conjunctive grammars are an extension of context-free grammars
by adding an explicit conjunction operation within the grammar
rules.
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An example of conjunctive grammar

The following grammar generates the language {anbncn | n ≥ 1},
known to not be context-free.

S → AB&DC
A→ aA | a
B → bBc | bc
C → Cc | c
D → aDb | ab

{aibjck | j = k} ∩ {aibjck | i = j} = {anbncn | n ≥ 1}

L(AB) L(DC ) L(S)
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An example of conjunctive grammar

The following grammar generates the language {anbncn | n ≥ 1},
known to not be context-free.

S → AB&DC
A→ aA | a
B → bBc | bc
C → Cc | c
D → aDb | ab

Each rule of a conjunctive grammar G = (Σ,N,P, S) is of the
form :

A→ α1&...&αm, for m ≥ 1 and αi ∈ (Σ ∪ N)+
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Expressivity

The expressive power of conjunctive grammars is largely unknown,
even over a unary alphabet.

Conjunctive grammars over a unary alphabet generate more than
regular languages [Jez].
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Over a unary alphabet

Example of the language {a4n | n ≥ 0} ⊂ {a}+, generated by the
grammar :

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A12 | aa
A3 → A1A2 &A12A12 | aaa
A12 → A1A2 &A3A3

We have a generic method to conceive any unary conjunctive
grammar generating the language {akn | n ≥ 0} ⊂ {a}+ with
k ≥ 4.
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Cellular Automata

I Cellular automaton : ribbon of cells.

I Each cell is in a given state, evolving over time according to
the states of its neighbors.

I A local transition function is applied in a synchronous way to
each cell and at each time step.

I The computation of the automaton is represented by a
space-time diagramm.

: 1
: 0

x y z

(x + y + z)%2
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Real time cellular automata as language recognizers

Cellular automata as word acceptors:

I Input: the initial configuration
of the CA is only determined by
the input word;

I Output: one specific cell called
the output cell gives the output,
“accept” or “reject”, of the
computation;

I Acceptance: an input word is
accepted by the CA at time t if
the output cell enters an
accepting state at time t.

w1 w2 w3 w4 w5

RealTimeCA

t = n

t = 1
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Real time cellular automata as language recognizers

A word is accepted in real time by a
CA if the word is accepted in minimal
time for the output cell to receive
each of its letters.

A language is recognized in real time
by a CA if its the set of word that it
accepts in real-time.

w1 w2 w3 w4 w5

RealTimeCA

t = n

t = 1
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Conjunctive grammars and cellular automata

LinConj = Trellis

LinConj is the linear restriction of conjunctive grammars.

Trellis is the one-way restriction of RealTimeCA.
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A question and its consequences

Is Conj a subset of RealTimeCA ?

I Conj ⊆ RealTimeCA would implies that Conj and
CFL ⊆ DTIME(n2).

I Conj * RealTimeCA would implies that either
Conj ( DSPACE(n) or RealTimeCA ( DSPACE(n).
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Two results

We have proved two weakened versions of this question.

Conj1⊆ RealTimeCA1

The inclusion Conj ⊆ RealTimeCA holds when restricted to unary
languages.

Conj ⊆ RealTime2OCA

RealTime2OCA: real time of 2 dimensional one-way cellular
automata
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Logic as a bridge from grammars to CA

I Computation of CA is deterministic → Horn formulae

I Computation of CA is local → predecessor operator

I Computation on 2 dimensions (time and space) → 2 variables
(with a symmetric role in the logic)
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Our logic

pred-ESO-HORN is the set of formulae of the form ∃R∀x∀yψ(x , y)
where:

I R is a finite set of binary predicates;

I ψ is a conjunction of Horn clauses of the form
δ1 ∧ . . . ∧ δr → δ0

where δ0 is either an atom R(x , y) or ⊥ and where each δi is:

I either an input litteral of one of the forms:
I Qs(x − a), Qs(y − a) pour s ∈ Σ,
I (¬)U(x − a) ou (¬)U(y − a), pour U ∈ {min, max},

I either a computation atom or a computation conjunction :
I S(x , y);
I S(x − a, y − b) ∧ x > a ∧ y > b.
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Equivalence of our logic with real time CA

Logic

Grid-Circuit

Cellular Automata

pred-ESO-HORN

RealTimeCA
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The grid-circuit
For an input word of size n:

I Grid of n × n cells, each being in a
given state.

I The state of the cell (x , y) only
depends of the states of the cells
(x − 1, y) and (x , y − 1).

I The output is read on the cell (n, n).

I 3 natural ways to fed the input.

y

1

1

n

n
x

w1

w2

w3

w4

w5

w1

w2

w3

w4

w5 w1

w2

w3

w4

w5
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A logic for the grid-circuit ?

Horn formula on two variables, with each clause being:

I either a computation clause:
δ1 ∧ · · · ∧ δh → R(x , y) where each
hypotheses δi is a conjunction
x > 1 ∧ T (x − 1, y) or
y > 1 ∧ S(x , y − 1);

I either a contradiction clause:
x = n ∧ y = n ∧ R(x , y)→ ⊥;

I either an input clause:
x = 1 ∧ Qs(y)→ R(x , y).

y

1

1

n

n
x

w1

w2

w3

w4

w5

state of site (x , y) = set of binary predicates true on (x , y)
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Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization Translation

Automatisable

pred-ESO-HORN

⇒ ⇒⇔ ⇔

RealTimeCA

I The logic of the grid-circuit corresponds to a normalized
version of our starting logic.

I The computation of the grid-circuit is local and uniform as for
a CA ⇒ direct translation of the grid-circuit into a CA.
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Equivalence between Grid-circuit and CA
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Binary normal form

Each conjunctive grammar can be rewritten in an equivalent binary
normal form (extension of the Chomsky normal form for CFL).

A conjunctive grammar G = (Σ,N,P,S) is in binary normal form
if each rule in P has one of the two following forms:

I a long rule: A→ B1C1&...&BmCm (m ≥ 1,Bi ,Cj ∈ N);

I a short rule: A→ a (a ∈ Σ).
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Example of a binary normal form

Binary normal form of the grammar generating the language
{a4n | n ≥ 0} ⊂ {a}+:

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A12 | A1′A1′

A3 → A1A2 &A12A12 | A1′A2′

A12 → A1A2 &A3A3

A1′ → a

A2′ → A1′A1′

Conjunctive grammars, cellular automata and logic 22 / 33



Expressing unary conjunctive grammars in our logic

Rules of a grammar G = ({a},N,P,S) in binary normal form:

I A→ B1C1&...&BmCm (m ≥ 1,Bi ,Cj ∈ N);

I A→ a.

The grammar is expressed in our logic by using three types of
binary predicates:

I MajA(x , y) ⇐⇒
⌈ y

2

⌉
≤ x ≤ y and ax ∈ L(A);

I MinA(x , y) ⇐⇒
⌈ y

2

⌉
≤ x < y and ay−x ∈ L(A) ;

I SumBC(x , y) ⇐⇒ there is some x ′ with
⌈ y

2

⌉
≤ x ′ ≤ x such

that
either ax

′ ∈ L(B) and ay−x
′ ∈ L(C ), or ay−x

′ ∈ L(B) and
ax

′ ∈ L(C ).

(x , y) corresponds to the concatenations axay−x and ay−xax .
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Expressing unary conjunctive grammars in our logic

Rules of a grammar G = ({a},N,P,S) in binary normal form:

I A→ B1C1&...&BmCm (m ≥ 1,Bi ,Cj ∈ N);

I A→ a.

(x , y) corresponds to the concatenations axay−x and ay−xax .

Sample of clauses

I MajBi
(x , y) ∧ MinCi

(x , y)→ SumBiCi(x , y) ;

I MinBi
(x , y) ∧ MajCi

(x , y)→ SumBiCi(x , y) ;

I ¬min(x) ∧ SumBiCi(x − 1, y)→ SumBiCi(x , y);

I x = y ∧ SumB1C1(x , y) ∧ · · · ∧ SumBmCm(x , y)→ MajA(x , y).
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Our result

Conj1⊆ RealTimeCA1

The inclusion Conj ⊆ RealTimeCA holds when restricted to unary
languages.

CFL1 = Trellis1 = LinConj1 = Reg1

Conj1

RealTimeCA1

DSPACE1(n)

(
⊆

⊆
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Computation example

Grammar

→ Formula→ Normalized formula → Grid circuit→ CA
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The method

Logic Cube-Circuit Cellular Automata

incl-pred-ESO-HORN
w

⇔ ⇔

Cube

w

RealTime2OCA
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Remarks on the logic

I Conjunction of Horn clauses;

I 3 variables with asymmetric roles: 2 variables for an induction
on intervals, 1 for predecessor induction.

([x + a, y − b], z − c)→ ([x , y ], z)

I Expressing conjunctive grammars: (x , y , z) corresponds to the
concatenations wx . . .wx+z−1wx+z . . .wy and
wx . . .wy−zwy−z+1 . . .wy .
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Signals diagram
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Our result

Conj ⊆ RealTime2OCA

RealTime2OCA: real time of 2 dimensional one-way cellular
automata

Trellis = LinConjCFL

RealTime2OCA

Conj RealTimeCA

DSPACE(n)

(( (

⊆ ⊆

⊆

6=

Conjunctive grammars, cellular automata and logic 30 / 33



Our result

Conj ⊆ RealTime2OCA

RealTime2OCA: real time of 2 dimensional one-way cellular
automata

Trellis = LinConjCFL

RealTime2OCA

Conj RealTimeCA

DSPACE(n)

(( (

⊆ ⊆
⊆

6=

Conjunctive grammars, cellular automata and logic 30 / 33



Overview

Introduction and results

The proof method

Expressing conjunctive grammars in our logic

Over a general alphabet

Conclusion

Conjunctive grammars, cellular automata and logic 31 / 33



Open questions

I The question whether Conj ⊆ RealTimeCA or not is still
open.

I Better understanding of the expressive power of conjunctive
grammars.

I Exact characterizations of Conj ? Through logic ? Through
computational complexity ?
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Take home message

I Conjunctive grammars seem very interesting by their link to
logic but their expressive power is still largely unknown.

I Two inclusions: Conj1 ⊆ RealTimeCA1 and
Conj ⊆ RealTime2OCA.

I The grid: natural way to see the induction of the problem.

I Method of proof: use of logic to program cellular automata.
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