
Conjunctive grammars, cellular automata
and logic

Théo Grente
Joint work with Étienne Grandjean and Véronique Terrier

LACL - Université Paris Est Créteil

December 7, 2021

Conjunctive grammars, cellular automata and logic 1 / 33

Overview

Introduction and results

The proof method

Expressing conjunctive grammars in our logic

Over a general alphabet

Conclusion

Conjunctive grammars, cellular automata and logic 2 / 33

Conjunctive grammars

A statement by Okhotin :
“Context-free grammars may be thought of as a logic for inductive
description of syntax in which the propositional connectives
available. . . are restricted to disjunction only.”

Conjunctive grammars are an extension of context-free grammars
by adding an explicit conjunction operation within the grammar
rules.

Conjunctive grammars, cellular automata and logic 3 / 33

An example of conjunctive grammar

The following grammar generates the language {anbncn | n ≥ 1},
known to not be context-free.

S → AB&DC
A→ aA | a
B → bBc | bc
C → Cc | c
D → aDb | ab

{aibjck | j = k} ∩ {aibjck | i = j} = {anbncn | n ≥ 1}

L(AB) L(DC) L(S)

Conjunctive grammars, cellular automata and logic 4 / 33

An example of conjunctive grammar

The following grammar generates the language {anbncn | n ≥ 1},
known to not be context-free.

S → AB&DC
A→ aA | a
B → bBc | bc
C → Cc | c
D → aDb | ab

Each rule of a conjunctive grammar G = (Σ,N,P, S) is of the
form :

A→ α1&...&αm, for m ≥ 1 and αi ∈ (Σ ∪ N)+

Conjunctive grammars, cellular automata and logic 4 / 33

Expressivity

The expressive power of conjunctive grammars is largely unknown,
even over a unary alphabet.

Conjunctive grammars over a unary alphabet generate more than
regular languages [Jez].

Conjunctive grammars, cellular automata and logic 5 / 33

Over a unary alphabet

Example of the language {a4n | n ≥ 0} ⊂ {a}+, generated by the
grammar :

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A12 | aa
A3 → A1A2 &A12A12 | aaa
A12 → A1A2 &A3A3

We have a generic method to conceive any unary conjunctive
grammar generating the language {akn | n ≥ 0} ⊂ {a}+ with
k ≥ 4.

Conjunctive grammars, cellular automata and logic 6 / 33

Cellular Automata

I Cellular automaton : ribbon of cells.

I Each cell is in a given state, evolving over time according to
the states of its neighbors.

I A local transition function is applied in a synchronous way to
each cell and at each time step.

I The computation of the automaton is represented by a
space-time diagramm.

: 1
: 0

x y z

(x + y + z)%2

Conjunctive grammars, cellular automata and logic 7 / 33

Cellular Automata

I Cellular automaton : ribbon of cells.

I Each cell is in a given state, evolving over time according to
the states of its neighbors.

I A local transition function is applied in a synchronous way to
each cell and at each time step.

I The computation of the automaton is represented by a
space-time diagramm.

: 1
: 0

x y z

(x + y + z)%2

Conjunctive grammars, cellular automata and logic 7 / 33

Cellular Automata

I Cellular automaton : ribbon of cells.

I Each cell is in a given state, evolving over time according to
the states of its neighbors.

I A local transition function is applied in a synchronous way to
each cell and at each time step.

I The computation of the automaton is represented by a
space-time diagramm.

: 1
: 0

x y z

(x + y + z)%2

Conjunctive grammars, cellular automata and logic 7 / 33

Cellular Automata

I Cellular automaton : ribbon of cells.

I Each cell is in a given state, evolving over time according to
the states of its neighbors.

I A local transition function is applied in a synchronous way to
each cell and at each time step.

I The computation of the automaton is represented by a
space-time diagramm.

: 1
: 0

x y z

(x + y + z)%2

Conjunctive grammars, cellular automata and logic 7 / 33

Cellular Automata

I Cellular automaton : ribbon of cells.

I Each cell is in a given state, evolving over time according to
the states of its neighbors.

I A local transition function is applied in a synchronous way to
each cell and at each time step.

I The computation of the automaton is represented by a
space-time diagramm.

: 1
: 0

x y z

(x + y + z)%2

Conjunctive grammars, cellular automata and logic 7 / 33

Real time cellular automata as language recognizers

Cellular automata as word acceptors:

I Input: the initial configuration
of the CA is only determined by
the input word;

I Output: one specific cell called
the output cell gives the output,
“accept” or “reject”, of the
computation;

I Acceptance: an input word is
accepted by the CA at time t if
the output cell enters an
accepting state at time t.

w1 w2 w3 w4 w5

RealTimeCA

t = n

t = 1

Conjunctive grammars, cellular automata and logic 8 / 33

Real time cellular automata as language recognizers

A word is accepted in real time by a
CA if the word is accepted in minimal
time for the output cell to receive
each of its letters.

A language is recognized in real time
by a CA if its the set of word that it
accepts in real-time.

w1 w2 w3 w4 w5

RealTimeCA

t = n

t = 1

Conjunctive grammars, cellular automata and logic 8 / 33

Conjunctive grammars and cellular automata

LinConj = Trellis

LinConj is the linear restriction of conjunctive grammars.

Trellis is the one-way restriction of RealTimeCA.

Conjunctive grammars, cellular automata and logic 9 / 33

A question and its consequences

Is Conj a subset of RealTimeCA ?

I Conj ⊆ RealTimeCA would implies that Conj and
CFL ⊆ DTIME(n2).

I Conj * RealTimeCA would implies that either
Conj (DSPACE(n) or RealTimeCA (DSPACE(n).

Conjunctive grammars, cellular automata and logic 10 / 33

Two results

We have proved two weakened versions of this question.

Conj1⊆ RealTimeCA1

The inclusion Conj ⊆ RealTimeCA holds when restricted to unary
languages.

Conj ⊆ RealTime2OCA

RealTime2OCA: real time of 2 dimensional one-way cellular
automata

Conjunctive grammars, cellular automata and logic 11 / 33

Overview

Introduction and results

The proof method

Expressing conjunctive grammars in our logic

Over a general alphabet

Conclusion

Conjunctive grammars, cellular automata and logic 12 / 33

Logic as a bridge from grammars to CA

I Computation of CA is deterministic → Horn formulae

I Computation of CA is local → predecessor operator

I Computation on 2 dimensions (time and space) → 2 variables
(with a symmetric role in the logic)

Conjunctive grammars, cellular automata and logic 13 / 33

Our logic

pred-ESO-HORN is the set of formulae of the form ∃R∀x∀yψ(x , y)
where:

I R is a finite set of binary predicates;

I ψ is a conjunction of Horn clauses of the form
δ1 ∧ . . . ∧ δr → δ0

where δ0 is either an atom R(x , y) or ⊥ and where each δi is:

I either an input litteral of one of the forms:
I Qs(x − a), Qs(y − a) pour s ∈ Σ,
I (¬)U(x − a) ou (¬)U(y − a), pour U ∈ {min, max},

I either a computation atom or a computation conjunction :
I S(x , y);
I S(x − a, y − b) ∧ x > a ∧ y > b.

Conjunctive grammars, cellular automata and logic 14 / 33

Equivalence of our logic with real time CA

Logic

Grid-Circuit

Cellular Automata

pred-ESO-HORN

RealTimeCA

Conjunctive grammars, cellular automata and logic 15 / 33

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

pred-ESO-HORN

RealTimeCA

Conjunctive grammars, cellular automata and logic 15 / 33

The grid-circuit
For an input word of size n:

I Grid of n × n cells, each being in a
given state.

I The state of the cell (x , y) only
depends of the states of the cells
(x − 1, y) and (x , y − 1).

I The output is read on the cell (n, n).

I 3 natural ways to fed the input.

y

1

1

n

n
x

w1

w2

w3

w4

w5

w1

w2

w3

w4

w5 w1

w2

w3

w4

w5

Conjunctive grammars, cellular automata and logic 16 / 33

The grid-circuit
For an input word of size n:

I Grid of n × n cells, each being in a
given state.

I The state of the cell (x , y) only
depends of the states of the cells
(x − 1, y) and (x , y − 1).

I The output is read on the cell (n, n).

I 3 natural ways to fed the input.

y

1

1

n

n
x

w1

w2

w3

w4

w5

w1

w2

w3

w4

w5 w1

w2

w3

w4

w5

Conjunctive grammars, cellular automata and logic 16 / 33

The grid-circuit
For an input word of size n:

I Grid of n × n cells, each being in a
given state.

I The state of the cell (x , y) only
depends of the states of the cells
(x − 1, y) and (x , y − 1).

I The output is read on the cell (n, n).

I 3 natural ways to fed the input.

y

1

1

n

n
x

w1

w2

w3

w4

w5

w1

w2

w3

w4

w5 w1

w2

w3

w4

w5

Conjunctive grammars, cellular automata and logic 16 / 33

A logic for the grid-circuit ?

Horn formula on two variables, with each clause being:

I either a computation clause:
δ1 ∧ · · · ∧ δh → R(x , y) where each
hypotheses δi is a conjunction
x > 1 ∧ T (x − 1, y) or
y > 1 ∧ S(x , y − 1);

I either a contradiction clause:
x = n ∧ y = n ∧ R(x , y)→ ⊥;

I either an input clause:
x = 1 ∧ Qs(y)→ R(x , y).

y

1

1

n

n
x

w1

w2

w3

w4

w5

state of site (x , y) = set of binary predicates true on (x , y)

Conjunctive grammars, cellular automata and logic 17 / 33

A logic for the grid-circuit ?

Horn formula on two variables, with each clause being:

I either a computation clause:
δ1 ∧ · · · ∧ δh → R(x , y) where each
hypotheses δi is a conjunction
x > 1 ∧ T (x − 1, y) or
y > 1 ∧ S(x , y − 1);

I either a contradiction clause:
x = n ∧ y = n ∧ R(x , y)→ ⊥;

I either an input clause:
x = 1 ∧ Qs(y)→ R(x , y).

y

1

1

n

n
x

w1

w2

w3

w4

w5

state of site (x , y) = set of binary predicates true on (x , y)

Conjunctive grammars, cellular automata and logic 17 / 33

A logic for the grid-circuit ?

Horn formula on two variables, with each clause being:

I either a computation clause:
δ1 ∧ · · · ∧ δh → R(x , y) where each
hypotheses δi is a conjunction
x > 1 ∧ T (x − 1, y) or
y > 1 ∧ S(x , y − 1);

I either a contradiction clause:
x = n ∧ y = n ∧ R(x , y)→ ⊥;

I either an input clause:
x = 1 ∧ Qs(y)→ R(x , y).

y

1

1

n

n
x

w1

w2

w3

w4

w5

state of site (x , y) = set of binary predicates true on (x , y)

Conjunctive grammars, cellular automata and logic 17 / 33

A logic for the grid-circuit ?

Horn formula on two variables, with each clause being:

I either a computation clause:
δ1 ∧ · · · ∧ δh → R(x , y) where each
hypotheses δi is a conjunction
x > 1 ∧ T (x − 1, y) or
y > 1 ∧ S(x , y − 1);

I either a contradiction clause:
x = n ∧ y = n ∧ R(x , y)→ ⊥;

I either an input clause:
x = 1 ∧ Qs(y)→ R(x , y).

y

1

1

n

n
x

w1

w2

w3

w4

w5

state of site (x , y) = set of binary predicates true on (x , y)

Conjunctive grammars, cellular automata and logic 17 / 33

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization Translation

Automatisable

pred-ESO-HORN

⇒ ⇒⇔ ⇔

RealTimeCA

I The logic of the grid-circuit corresponds to a normalized
version of our starting logic.

I The computation of the grid-circuit is local and uniform as for
a CA ⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 18 / 33

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization

Translation

Automatisable

pred-ESO-HORN ⇒

⇒⇔ ⇔

RealTimeCA

I The logic of the grid-circuit corresponds to a normalized
version of our starting logic.

I The computation of the grid-circuit is local and uniform as for
a CA ⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 18 / 33

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization Translation

Automatisable

pred-ESO-HORN ⇒ ⇒

⇔ ⇔

RealTimeCA

I The logic of the grid-circuit corresponds to a normalized
version of our starting logic.

I The computation of the grid-circuit is local and uniform as for
a CA ⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 18 / 33

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization Translation

Automatisable

pred-ESO-HORN

⇒ ⇒⇔ ⇔

RealTimeCA

I The logic of the grid-circuit corresponds to a normalized
version of our starting logic.

I The computation of the grid-circuit is local and uniform as for
a CA ⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 18 / 33

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization Translation

Automatisable

pred-ESO-HORN

⇒ ⇒

⇔ ⇔

RealTimeCA

I The logic of the grid-circuit corresponds to a normalized
version of our starting logic.

I The computation of the grid-circuit is local and uniform as for
a CA ⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 18 / 33

Equivalence between Grid-circuit and CA

w1

w2

w3

w4

w5

w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

w1 w2 w3 w4 w5

w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

w1

w2

w3

w4

w5

Conjunctive grammars, cellular automata and logic 19 / 33

Overview

Introduction and results

The proof method

Expressing conjunctive grammars in our logic

Over a general alphabet

Conclusion

Conjunctive grammars, cellular automata and logic 20 / 33

Binary normal form

Each conjunctive grammar can be rewritten in an equivalent binary
normal form (extension of the Chomsky normal form for CFL).

A conjunctive grammar G = (Σ,N,P,S) is in binary normal form
if each rule in P has one of the two following forms:

I a long rule: A→ B1C1&...&BmCm (m ≥ 1,Bi ,Cj ∈ N);

I a short rule: A→ a (a ∈ Σ).

Conjunctive grammars, cellular automata and logic 21 / 33

Example of a binary normal form

Binary normal form of the grammar generating the language
{a4n | n ≥ 0} ⊂ {a}+:

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A12 | A1′A1′

A3 → A1A2 &A12A12 | A1′A2′

A12 → A1A2 &A3A3

A1′ → a

A2′ → A1′A1′

Conjunctive grammars, cellular automata and logic 22 / 33

Expressing unary conjunctive grammars in our logic

Rules of a grammar G = ({a},N,P,S) in binary normal form:

I A→ B1C1&...&BmCm (m ≥ 1,Bi ,Cj ∈ N);

I A→ a.

The grammar is expressed in our logic by using three types of
binary predicates:

I MajA(x , y) ⇐⇒
⌈ y

2

⌉
≤ x ≤ y and ax ∈ L(A);

I MinA(x , y) ⇐⇒
⌈ y

2

⌉
≤ x < y and ay−x ∈ L(A) ;

I SumBC(x , y) ⇐⇒ there is some x ′ with
⌈ y

2

⌉
≤ x ′ ≤ x such

that
either ax

′ ∈ L(B) and ay−x
′ ∈ L(C), or ay−x

′ ∈ L(B) and
ax

′ ∈ L(C).

(x , y) corresponds to the concatenations axay−x and ay−xax .

Conjunctive grammars, cellular automata and logic 23 / 33

Expressing unary conjunctive grammars in our logic

Rules of a grammar G = ({a},N,P,S) in binary normal form:

I A→ B1C1&...&BmCm (m ≥ 1,Bi ,Cj ∈ N);

I A→ a.

(x , y) corresponds to the concatenations axay−x and ay−xax .

Sample of clauses

I MajBi
(x , y) ∧ MinCi

(x , y)→ SumBiCi(x , y) ;

I MinBi
(x , y) ∧ MajCi

(x , y)→ SumBiCi(x , y) ;

I ¬min(x) ∧ SumBiCi(x − 1, y)→ SumBiCi(x , y);

I x = y ∧ SumB1C1(x , y) ∧ · · · ∧ SumBmCm(x , y)→ MajA(x , y).

Conjunctive grammars, cellular automata and logic 23 / 33

Our result

Conj1⊆ RealTimeCA1

The inclusion Conj ⊆ RealTimeCA holds when restricted to unary
languages.

CFL1 = Trellis1 = LinConj1 = Reg1

Conj1

RealTimeCA1

DSPACE1(n)

(
⊆

⊆

Conjunctive grammars, cellular automata and logic 24 / 33

Computation example

Grammar

→ Formula→ Normalized formula → Grid circuit→ CA

Conjunctive grammars, cellular automata and logic 25 / 33

Computation example

Grammar → Formula

→ Normalized formula → Grid circuit→ CA

Conjunctive grammars, cellular automata and logic 25 / 33

Computation example

Grammar → Formula→ Normalized formula

→ Grid circuit→ CA

Conjunctive grammars, cellular automata and logic 25 / 33

Computation example

Grammar → Formula→ Normalized formula → Grid circuit

→ CA

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A12 | A1′A1′

A3 → A1A2 &A12A12 | A1′A2′

A12 → A1A2 &A3A3

A1′ → a

A2′ → A1′A1′

Conjunctive grammars, cellular automata and logic 25 / 33

Computation example

Grammar → Formula→ Normalized formula → Grid circuit→ CA

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A12 | A1′A1′

A3 → A1A2 &A12A12 | A1′A2′

A12 → A1A2 &A3A3

A1′ → a

A2′ → A1′A1′

Conjunctive grammars, cellular automata and logic 25 / 33

Overview

Introduction and results

The proof method

Expressing conjunctive grammars in our logic

Over a general alphabet

Conclusion

Conjunctive grammars, cellular automata and logic 26 / 33

The method

Logic Cube-Circuit Cellular Automata

incl-pred-ESO-HORN
w

⇔ ⇔

Cube

w

RealTime2OCA

Conjunctive grammars, cellular automata and logic 27 / 33

Remarks on the logic

I Conjunction of Horn clauses;

I 3 variables with asymmetric roles: 2 variables for an induction
on intervals, 1 for predecessor induction.

([x + a, y − b], z − c)→ ([x , y], z)

I Expressing conjunctive grammars: (x , y , z) corresponds to the
concatenations wx . . .wx+z−1wx+z . . .wy and
wx . . .wy−zwy−z+1 . . .wy .

Conjunctive grammars, cellular automata and logic 28 / 33

Signals diagram

Conjunctive grammars, cellular automata and logic 29 / 33

Our result

Conj ⊆ RealTime2OCA

RealTime2OCA: real time of 2 dimensional one-way cellular
automata

Trellis = LinConjCFL

RealTime2OCA

Conj RealTimeCA

DSPACE(n)

(((

⊆ ⊆

⊆

6=

Conjunctive grammars, cellular automata and logic 30 / 33

Our result

Conj ⊆ RealTime2OCA

RealTime2OCA: real time of 2 dimensional one-way cellular
automata

Trellis = LinConjCFL

RealTime2OCA

Conj RealTimeCA

DSPACE(n)

(((

⊆ ⊆
⊆

6=

Conjunctive grammars, cellular automata and logic 30 / 33

Overview

Introduction and results

The proof method

Expressing conjunctive grammars in our logic

Over a general alphabet

Conclusion

Conjunctive grammars, cellular automata and logic 31 / 33

Open questions

I The question whether Conj ⊆ RealTimeCA or not is still
open.

I Better understanding of the expressive power of conjunctive
grammars.

I Exact characterizations of Conj ? Through logic ? Through
computational complexity ?

Conjunctive grammars, cellular automata and logic 32 / 33

Take home message

I Conjunctive grammars seem very interesting by their link to
logic but their expressive power is still largely unknown.

I Two inclusions: Conj1 ⊆ RealTimeCA1 and
Conj ⊆ RealTime2OCA.

I The grid: natural way to see the induction of the problem.

I Method of proof: use of logic to program cellular automata.

Conjunctive grammars, cellular automata and logic 33 / 33

	Introduction and results
	The proof method
	Expressing conjunctive grammars in our logic
	Over a general alphabet
	Conclusion

