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Entropy and computability :

Let X be a bidimensional SFT.

Entropy : inf, I%(wa, where N,(X) is the number of n-square
which appear in at least one element of X.

Computability : x € R is computable when there is an algorithm
which approximates x with elements of Q with arbitrary precision.
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The question of intermediate gap functions

Question|[G.,Sablik, also related by M.Hochman] : does there exist
some f-block gluing bidimensional SFT with undecidable language
and log(n) = o(f(n)) and f(n) = o(n)?

Natural idea for f(n) = /n (fails) :

Problem : it is actually linear block gluing.
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Homshift : SFT Xg whose forbidden patterns are :

a
aan)
where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift :
C PSS

Interest : symmetries break down undecidability phenomena; in
general : the language is decidable, the entropy is computable
(Friedland).
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What are the possible gap functions for Hom shifts ?
Simplifications :
1. Block gluing — Vertical transitivity.

1
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2. Gap functions — Classes for the equivalence f ~ g defined by
forall n:
c+ kf(n) < g(n) < + K'f(n).
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Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are

©(1),0O(log(n)) and ©(n).
Proven part : if not ©(n) then O(log(n)).

Builds on tools developped by B.Marcus and N.Chandgotia.
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For ¢ vertex, the universal cover U (G) of G is the graph s.t. : i)
vertices : caj...ax, k > 0 without back-tracking (aba); ii) edges :

(car...aky1,cai...ax).
All these graphs are the same up to isomorphism.
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Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.
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lVl [ u ]

T
l‘—H l:u—TH
KK—H i%J




Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.
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Proof : 1. The universal cover is a finite graph. This implies that G
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Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X is
©(1)-transitive or ©(n)-transitive.

Proof : 2. The universal cover is an infinite graph.

For n > 0, consider some non-backtracking path v = a;...ap511,
and v = (a1a2)"a;.

Assume u, v can be glued at distance < n.
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q
x € Xg y € Uy (G)

The paths p and g have to be equal in the universal cover, which is
impossible.
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Pavlov and Schraudner’s conjecture

Conjecture[R.Pavlov, M.Schraudner] : ©(1) and ©(n) are the only
transitivity classes for Hom shifts.

Counterexample[S.Gangloff,B.Hellouin,P.Oprocha] : The following
graph K provides a counter-example :

Indeed, we proved that Xy is ©(log(n))-transitive.
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Proof : 1. Xk is at least log(n)-transitive.
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For yic(w) maximal size of a c-block in w : pic(w) > Suc(c") — 3.
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Proof : 2. Xk is at most log(n)-transitive.

iii) How to smash down any cycle :

XX ©

iv) Every path of even length can be transformed into a cycle in a
bounded number of steps.
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Quaternary cover :

Square equivalence for non-backtracking paths :

q , ,
C / a q
, P , . . 25

Quaternary cover : quotient of the universal cover by square
equivalence.



Some examples of quaternary cover
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Square dismantlability
Decomposability : a cycle is decomposable whenever it is square
equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every
simple cycle is decomposable.

Lemma : the quaternary cover of a graph is always
square-dismantlable.
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Generalization

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph
G is square dismantlable, X¢ is O(log(n))-transitive.

As a consequence :

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph
G has a finite quaternary cover, X¢ is O(log(n))-transitive.
Furthermore :

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the
quaternary cover of G is infinite, X¢ is ©(n)-transitive.



Further research



Middle term goal : Prove a similar result for the class of
bidimensional SFT, or tools to produce examples between

©(log(n)) and ©(n).

Long term goal : What happens to the computability of entropy
between ©(log(n)) and ©(n) for bidimensional SFT?

Some natural short-term questions :

1. Is there an algorithm which decides, provided G, if its
quaternary cover is finite or infinite ?

2. What happens when G is oriented ?

3. For shifts of finite type corresponding to graphs Gy, G
isomorphic ?



