Towards a classification of transitivity classes for Hom shifts

S.Gangloff*, joint work with B.Hellouin** and P.Oprocha*

* AGH, Faculty of Applied Mathematics, Kraków, ** Laboratoire de recherche en Informatique, Orsay.

sgangloff@agh.edu.pl; silvere.gangloff@gmx.com

Motivations

Bidimensional SFT : bidimensional dynamical system corresponding to the $\mathbb{Z}^2\mbox{-}action$ of the shift

Forbidden patterns
$$\begin{bmatrix} 1\\ 1 \end{bmatrix}$$
 et $\begin{bmatrix} 1\\ 1 \end{bmatrix}$.

Entropy and computability :

Let X be a bidimensional SFT.

Entropy and computability :

Let X be a bidimensional SFT.

Entropy : $\inf_n \frac{\log(N_n(X))}{n^2}$, where $N_n(X)$ is the number of *n*-square which appear in at least one element of X.

Entropy and computability :

Let X be a bidimensional SFT.

Entropy : $\inf_n \frac{\log(N_n(X))}{n^2}$, where $N_n(X)$ is the number of *n*-square which appear in at least one element of X.

Computability : $x \in \mathbb{R}$ is computable when there is an algorithm which approximates x with elements of \mathbb{Q} with arbitrary precision.

A computational 'transition' :

f-Block gluing :

Worldmap :

Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and log(n) = o(f(n)) and f(n) = o(n)?

Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and log(n) = o(f(n)) and f(n) = o(n)?

Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and log(n) = o(f(n)) and f(n) = o(n)?

Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and log(n) = o(f(n)) and f(n) = o(n)?

Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and log(n) = o(f(n)) and f(n) = o(n)?

Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and log(n) = o(f(n)) and f(n) = o(n)?

Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and log(n) = o(f(n)) and f(n) = o(n)?

Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and log(n) = o(f(n)) and f(n) = o(n)?

Natural idea for $f(n) = \sqrt{n}$ (fails) :

Problem : it is actually linear block gluing.

Homshifts

Homshift : SFT X_G whose forbidden patterns are :

where (a, b) not an edge in G (non-oriented simple graph).

Homshift : SFT X_G whose forbidden patterns are :

where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift :

Homshift : SFT X_G whose forbidden patterns are :

where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift :

Interest : symmetries break down undecidability phenomena; in general : the language is decidable, the entropy is computable (Friedland).

Simplifications :

Simplifications :

1. Block gluing ightarrow Vertical transitivity.

Simplifications :

1. Block gluing ightarrow Vertical transitivity.

2. Gap functions \rightarrow Classes for the equivalence $f \sim g$ defined by for all n :

$$c + kf(n) \leq g(n) \leq c' + k'f(n).$$

Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are $\Theta(1), \Theta(\log(n))$ and $\Theta(n)$.

Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are $\Theta(1), \Theta(\log(n))$ and $\Theta(n)$.

Proven part : if not $\Theta(n)$ then $O(\log(n))$.

Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are $\Theta(1), \Theta(\log(n))$ and $\Theta(n)$.

Proven part : if not $\Theta(n)$ then $O(\log(n))$.

Builds on tools developped by B.Marcus and N.Chandgotia.

For c vertex, the **universal cover** $U_c(G)$ of G is the graph s.t.: i) vertices : $ca_1...a_k$, $k \ge 0$ without back-tracking (aba); ii) edges : $(ca_1...a_{k+1}, ca_1...a_k)$.

All these graphs are the same up to isomorphism.

For c vertex, the **universal cover** $U_c(G)$ of G is the graph s.t.: i) vertices : $ca_1...a_k$, $k \ge 0$ without back-tracking (aba); ii) edges : $(ca_1...a_{k+1}, ca_1...a_k)$.

All these graphs are the same up to isomorphism.

Ex:

1

where p_a is a path of smallest length from c to a.

,

,

,

,

where p_a is a path of smallest length from c to a.

,

,

٧	u	

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.

abacdce

а	b	а	С	d	С	е			
	а	b	а	С	a	С	е		
		а	b	а	С	а	С	а	

Proof : **2**. The universal cover is an infinite graph.

Proof : **2**. The universal cover is an infinite graph.

For $n \ge 0$, consider some non-backtracking path $u = a_1 \dots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Proof : 2. The universal cover is an infinite graph.

For $n \ge 0$, consider some non-backtracking path $u = a_1 \dots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance < n.

Proof : **2**. The universal cover is an infinite graph.

For $n \ge 0$, consider some non-backtracking path $u = a_1 \dots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance < n.

 $x \in X_G$

Proof : **2**. The universal cover is an infinite graph.

For $n \ge 0$, consider some non-backtracking path $u = a_1 \dots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance < n.

 $x \in X_G$

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_G is $\Theta(1)$ -transitive or $\Theta(n)$ -transitive.

Proof : 2. The universal cover is an infinite graph.

For $n \ge 0$, consider some non-backtracking path $u = a_1 \dots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance < n.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_G is $\Theta(1)$ -transitive or $\Theta(n)$ -transitive.

Proof : 2. The universal cover is an infinite graph.

For $n \ge 0$, consider some non-backtracking path $u = a_1 \dots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance < n.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_G is $\Theta(1)$ -transitive or $\Theta(n)$ -transitive.

Proof : 2. The universal cover is an infinite graph.

For $n \ge 0$, consider some non-backtracking path $u = a_1 \dots a_{2n+1}$, and $v = (a_1 a_2)^n a_1$.

Assume u, v can be glued at distance < n.

The paths *p* and *q* have to be equal in the universal cover, which is impossible.

Our results

Pavlov and Schraudner's conjecture

Conjecture[R.Pavlov, M.Schraudner] : $\Theta(1)$ and $\Theta(n)$ are the only transitivity classes for Hom shifts.

Pavlov and Schraudner's conjecture

Conjecture[R.Pavlov, M.Schraudner] : $\Theta(1)$ and $\Theta(n)$ are the only transitivity classes for Hom shifts.

Counterexample[S.Gangloff, B.Hellouin, P.Oprocha] : The following graph *K* provides a counter-example :

Indeed, we proved that $X_{\mathcal{K}}$ is $\Theta(\log(n))$ -transitive.

_____ without c

The shift is forced on the remainder of w.

For $\mu_c(w)$ maximal size of a *c*-block in $w : \mu_c(w) \ge \frac{1}{2}\mu_c(c^n) - 3$.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :

ii) How to smash down an iterate of a cycle :

c c c ··· c ··· c c c

iii) How to smash down any cycle :

iv) Every path of even length can be transformed into a cycle in a bounded number of steps.

Quaternary cover :

Square equivalence for non-backtracking paths :

Quaternary cover :

Square equivalence for non-backtracking paths :

Quaternary cover : quotient of the universal cover by square equivalence.

Some examples of quaternary cover

Square dismantlability

Decomposability : a cycle is decomposable whenever it is square equivalent to a trivial cycle.

Square dismantlability

Decomposability : a cycle is decomposable whenever it is square equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every simple cycle is decomposable.

Square dismantlability

Decomposability : a cycle is decomposable whenever it is square equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every simple cycle is decomposable.

Lemma : the quaternary cover of a graph is always square-dismantlable.

Generalization

Theorem[S.Gangloff, B.Hellouin, P.Oprocha] : Whenever the graph G is square dismantlable, X_G is $O(\log(n))$ -transitive.

Generalization

Theorem[S.Gangloff, B.Hellouin, P.Oprocha] : Whenever the graph G is square dismantlable, X_G is $O(\log(n))$ -transitive.

As a consequence :

Theorem[S.Gangloff, B.Hellouin, P.Oprocha] : Whenever the graph G has a finite quaternary cover, X_G is $O(\log(n))$ -transitive.

Generalization

Theorem[S.Gangloff, B.Hellouin, P.Oprocha] : Whenever the graph G is square dismantlable, X_G is $O(\log(n))$ -transitive.

As a consequence :

Theorem[S.Gangloff, B.Hellouin, P.Oprocha] : Whenever the graph G has a finite quaternary cover, X_G is $O(\log(n))$ -transitive. Furthermore :

Theorem[S.Gangloff, B.Hellouin, P.Oprocha] : Whenever the quaternary cover of G is infinite, X_G is $\Theta(n)$ -transitive.

Further research

Middle term goal : Prove a similar result for the class of bidimensional SFT, or tools to produce examples between $\Theta(\log(n))$ and $\Theta(n)$.

Long term goal : What happens to the computability of entropy between $\Theta(\log(n))$ and $\Theta(n)$ for bidimensional SFT ?

Some natural short-term questions :

- 1. Is there an algorithm which decides, provided G, if its quaternary cover is finite or infinite?
- 2. What happens when G is oriented?
- 3. For shifts of finite type corresponding to graphs G_1, G_2 isomorphic?