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Motivations



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift

on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .
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Entropy and computability :

Let X be a bidimensional SFT.

Entropy : infn
log(Nn(X ))

n2
, where Nn(X ) is the number of n-square

which appear in at least one element of X .

Computability : x ∈ R is computable when there is an algorithm
which approximates x with elements of Q with arbitrary precision.
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A computational 'transition' :

f -Block gluing :

q

n

q

f (n)

p

Worldmap :

O(n) [G.,Sablik]

o(log(n))[G.,Hellouin]

Swamp of

undecidability

[Hochman,Meyerovitch]
Algorithmic computability

domain

No man's land

Liminal area



The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman] : does there exist
some f -block gluing bidimensional SFT with undecidable language
and log(n) = o(f (n)) and f (n) = o(n) ?

Natural idea for f (n) =
√
n (fails) :

Problem : it is actually linear block gluing.
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Homshifts



Homshift : SFT XG whose forbidden patterns are :

b
a

, a b ,

where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift :

0 1

Interest : symmetries break down undecidability phenomena ; in
general : the language is decidable, the entropy is computable
(Friedland).
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What are the possible gap functions for Hom shifts ?

Simpli�cations :

1. Block gluing → Vertical transitivity.

2. Gap functions → Classes for the equivalence f ∼ g de�ned by
for all n :

c + kf (n) ≤ g(n) ≤ c ′ + k ′f (n).
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Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are

Θ(1),Θ(log(n)) and Θ(n).

Proven part : if not Θ(n) then O(log(n)).

Builds on tools developped by B.Marcus and N.Chandgotia.
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For c vertex, the universal cover Uc(G ) of G is the graph s.t. : i)
vertices : ca1...ak , k ≥ 0 without back-tracking (aba) ; ii) edges :
(ca1...ak+1, ca1...ak).

All these graphs are the same up to isomorphism.

Ex :

G

c

a b

Uc(G )

cab ca c cb cba

. . .. . .
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When G is square free, every pair (c, z), z ∈ Z2 de�nes a 'natural'
function from XG to XUc(G) :

y ∈ XUc(G)

pa

x ∈ XG

a

,

where pa is a path of smallest length from c to a.
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Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.
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Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.
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Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 2. The universal cover is an in�nite graph.

For n ≥ 0, consider some non-backtracking path u = a1...a2n+1,
and v = (a1a2)na1.

Assume u, v can be glued at distance < n.

u

v

x ∈ XG

y ∈ Ua1(G )

p

q

The paths p and q have to be equal in the universal cover, which is
impossible.
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Further research



Middle term goal : Prove a similar result for the class of
bidimensional SFT, or tools to produce examples between
Θ(log(n)) and Θ(n).

Long term goal : What happens to the computability of entropy
between Θ(log(n)) and Θ(n) for bidimensional SFT ?

Some natural short-term questions :

1. Is there an algorithm which decides, provided G , if its
quaternary cover is �nite or in�nite ?

2. What happens when G is oriented ?

3. For shifts of �nite type corresponding to graphs G1,G2

isomorphic ?


