
Towards a classi�cation of transitivity classes for

Hom shifts

S.Ganglo�∗, joint work with B.Hellouin∗∗ and P.Oprocha∗

∗ AGH, Faculty of Applied Mathematics, Kraków, ∗∗ Laboratoire de

recherche en Informatique, Orsay.

sganglo�@agh.edu.pl ; silvere.ganglo�@gmx.com



Motivations



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift

on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1 01

1

0

1 oops0

1

1



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1 01

1

0

1 oops0

1

1



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1 01

1

0

1 oops0

1

1



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1 01

1

0

1 oops0

1

1



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1 01

1

0

1 oops0

1

1



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1

01

1

0

1 oops0

1

1



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1 01

1

0

1 oops0

1

1



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1 01

1

0

1 oops

0

1

1



Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of AZ2

de�ned by a �nite set of forbidden patterns.

Ex : Hard square shift ; A = {0, 1}

Forbidden patterns 1
1

et 1 1 .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

10

1 01

1

0

1 oops0

1

1



Entropy and computability :

Let X be a bidimensional SFT.

Entropy : infn
log(Nn(X ))

n2
, where Nn(X ) is the number of n-square

which appear in at least one element of X .

Computability : x ∈ R is computable when there is an algorithm
which approximates x with elements of Q with arbitrary precision.



Entropy and computability :

Let X be a bidimensional SFT.

Entropy : infn
log(Nn(X ))

n2
, where Nn(X ) is the number of n-square

which appear in at least one element of X .

Computability : x ∈ R is computable when there is an algorithm
which approximates x with elements of Q with arbitrary precision.



Entropy and computability :

Let X be a bidimensional SFT.

Entropy : infn
log(Nn(X ))

n2
, where Nn(X ) is the number of n-square

which appear in at least one element of X .

Computability : x ∈ R is computable when there is an algorithm
which approximates x with elements of Q with arbitrary precision.



A computational 'transition' :

f -Block gluing :

q

n

q

f (n)

p

Worldmap :

O(n) [G.,Sablik]

o(log(n))[G.,Hellouin]

Swamp of

undecidability

[Hochman,Meyerovitch]
Algorithmic computability

domain

No man's land

Liminal area



The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman] : does there exist
some f -block gluing bidimensional SFT with undecidable language
and log(n) = o(f (n)) and f (n) = o(n) ?

Natural idea for f (n) =
√
n (fails) :

Problem : it is actually linear block gluing.



The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman] : does there exist
some f -block gluing bidimensional SFT with undecidable language
and log(n) = o(f (n)) and f (n) = o(n) ?

Natural idea for f (n) =
√
n (fails) :

Problem : it is actually linear block gluing.



The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman] : does there exist
some f -block gluing bidimensional SFT with undecidable language
and log(n) = o(f (n)) and f (n) = o(n) ?

Natural idea for f (n) =
√
n (fails) :

Problem : it is actually linear block gluing.



The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman] : does there exist
some f -block gluing bidimensional SFT with undecidable language
and log(n) = o(f (n)) and f (n) = o(n) ?

Natural idea for f (n) =
√
n (fails) :

Problem : it is actually linear block gluing.



The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman] : does there exist
some f -block gluing bidimensional SFT with undecidable language
and log(n) = o(f (n)) and f (n) = o(n) ?

Natural idea for f (n) =
√
n (fails) :

Problem : it is actually linear block gluing.



The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman] : does there exist
some f -block gluing bidimensional SFT with undecidable language
and log(n) = o(f (n)) and f (n) = o(n) ?

Natural idea for f (n) =
√
n (fails) :

Problem : it is actually linear block gluing.



The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman] : does there exist
some f -block gluing bidimensional SFT with undecidable language
and log(n) = o(f (n)) and f (n) = o(n) ?

Natural idea for f (n) =
√
n (fails) :

Problem : it is actually linear block gluing.



The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman] : does there exist
some f -block gluing bidimensional SFT with undecidable language
and log(n) = o(f (n)) and f (n) = o(n) ?

Natural idea for f (n) =
√
n (fails) :

Problem : it is actually linear block gluing.



Homshifts



Homshift : SFT XG whose forbidden patterns are :

b
a

, a b ,

where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift :

0 1

Interest : symmetries break down undecidability phenomena ; in
general : the language is decidable, the entropy is computable
(Friedland).



Homshift : SFT XG whose forbidden patterns are :

b
a

, a b ,

where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift :

0 1

Interest : symmetries break down undecidability phenomena ; in
general : the language is decidable, the entropy is computable
(Friedland).



Homshift : SFT XG whose forbidden patterns are :

b
a

, a b ,

where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift :

0 1

Interest : symmetries break down undecidability phenomena ; in
general : the language is decidable, the entropy is computable
(Friedland).



What are the possible gap functions for Hom shifts ?

Simpli�cations :

1. Block gluing → Vertical transitivity.

2. Gap functions → Classes for the equivalence f ∼ g de�ned by
for all n :

c + kf (n) ≤ g(n) ≤ c ′ + k ′f (n).



What are the possible gap functions for Hom shifts ?

Simpli�cations :

1. Block gluing → Vertical transitivity.

2. Gap functions → Classes for the equivalence f ∼ g de�ned by
for all n :

c + kf (n) ≤ g(n) ≤ c ′ + k ′f (n).



What are the possible gap functions for Hom shifts ?

Simpli�cations :

1. Block gluing → Vertical transitivity.

2. Gap functions → Classes for the equivalence f ∼ g de�ned by
for all n :

c + kf (n) ≤ g(n) ≤ c ′ + k ′f (n).



What are the possible gap functions for Hom shifts ?

Simpli�cations :

1. Block gluing → Vertical transitivity.

2. Gap functions → Classes for the equivalence f ∼ g de�ned by
for all n :

c + kf (n) ≤ g(n) ≤ c ′ + k ′f (n).



Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are

Θ(1),Θ(log(n)) and Θ(n).

Proven part : if not Θ(n) then O(log(n)).

Builds on tools developped by B.Marcus and N.Chandgotia.



Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are

Θ(1),Θ(log(n)) and Θ(n).

Proven part : if not Θ(n) then O(log(n)).

Builds on tools developped by B.Marcus and N.Chandgotia.



Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are

Θ(1),Θ(log(n)) and Θ(n).

Proven part : if not Θ(n) then O(log(n)).

Builds on tools developped by B.Marcus and N.Chandgotia.



For c vertex, the universal cover Uc(G ) of G is the graph s.t. : i)
vertices : ca1...ak , k ≥ 0 without back-tracking (aba) ; ii) edges :
(ca1...ak+1, ca1...ak).

All these graphs are the same up to isomorphism.

Ex :

G

c

a b

Uc(G )

cab ca c cb cba

. . .. . .



For c vertex, the universal cover Uc(G ) of G is the graph s.t. : i)
vertices : ca1...ak , k ≥ 0 without back-tracking (aba) ; ii) edges :
(ca1...ak+1, ca1...ak).

All these graphs are the same up to isomorphism.

Ex :

G

c

a b

Uc(G )

cab ca c cb cba

. . .. . .



When G is square free, every pair (c, z), z ∈ Z2 de�nes a 'natural'
function from XG to XUc(G) :

y ∈ XUc(G)

pa

x ∈ XG

a

,

where pa is a path of smallest length from c to a.



When G is square free, every pair (c, z), z ∈ Z2 de�nes a 'natural'
function from XG to XUc(G) :

y ∈ XUc(G)

pa

x ∈ XG

a ,

where pa is a path of smallest length from c to a.



When G is square free, every pair (c, z), z ∈ Z2 de�nes a 'natural'
function from XG to XUc(G) :

y ∈ XUc(G)

pa

x ∈ XG

a

,

where pa is a path of smallest length from c to a.



When G is square free, every pair (c, z), z ∈ Z2 de�nes a 'natural'
function from XG to XUc(G) :

y ∈ XUc(G)

pa

x ∈ XG

a

,

where pa is a path of smallest length from c to a.



When G is square free, every pair (c, z), z ∈ Z2 de�nes a 'natural'
function from XG to XUc(G) :

y ∈ XUc(G)

pa

x ∈ XG

a

,

where pa is a path of smallest length from c to a.



When G is square free, every pair (c, z), z ∈ Z2 de�nes a 'natural'
function from XG to XUc(G) :

y ∈ XUc(G)

pa

x ∈ XG

a

,

where pa is a path of smallest length from c to a.



When G is square free, every pair (c, z), z ∈ Z2 de�nes a 'natural'
function from XG to XUc(G) :

y ∈ XUc(G)

pa

x ∈ XG

a

,

where pa is a path of smallest length from c to a.



When G is square free, every pair (c, z), z ∈ Z2 de�nes a 'natural'
function from XG to XUc(G) :

y ∈ XUc(G)

pa

x ∈ XG

a

,

where pa is a path of smallest length from c to a.



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv
uv
uv
uv
uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv
uv
uv
uv
uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

u

v
uv
uv
uv
uv
uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

u

v
uv
uv
uv
uv
uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv

uv
uv
uv
uv
uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv

uv
uv
uv
uv
uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv

uv
uv
uv
uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv
uv

uv
uv
uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv
uv
uv

uv
uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv
uv
uv
uv

uv
uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv
uv
uv
uv
uv

uv
uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv
uv
uv
uv
uv
uv

uv
uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv
uv
uv
uv
uv
uv
uv

uv



Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every in�nite row can appear below to its right shift.

uv
uv
uv
uv
uv
uv
uv
uv
uv



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.

a
b

c d
e

a b a c d c e

a b a c a c e
a b a c a c a
a b a b a b a

a b a b a b a
a b a b a b a

a b a b a b a



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.

a
b

c d
e

a b a c d c e

a b a c a c e
a b a c a c a
a b a b a b a

a b a b a b a
a b a b a b a

a b a b a b a



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.

a
b

c d
e

a b a c d c e

a b a c a c e
a b a c a c a
a b a b a b a

a b a b a b a
a b a b a b a

a b a b a b a



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.

a
b

c d
e

a b a c d c e
a b a c a c e

a b a c a c a
a b a b a b a

a b a b a b a
a b a b a b a

a b a b a b a



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.

a
b

c d
e

a b a c d c e
a b a c a c e
a b a c a c a

a b a b a b a
a b a b a b a

a b a b a b a
a b a b a b a



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.

a
b

c d
e

a b a c d c e
a b a c a c e
a b a c a c a
a b a b a b a

a b a b a b a
a b a b a b a

a b a b a b a



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.

a
b

c d
e

a b a c d c e
a b a c a c e
a b a c a c a
a b a b a b a

a b a b a b a

a b a b a b a
a b a b a b a



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.

a
b

c d
e

a b a c d c e
a b a c a c e
a b a c a c a
a b a b a b a

a b a b a b a
a b a b a b a

a b a b a b a



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 1. The universal cover is a �nite graph. This implies that G
is a �nite tree.

a
b

c d
e

a b a c d c e
a b a c a c e
a b a c a c a
a b a b a b a

a b a b a b a
a b a b a b a

a b a b a b a



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 2. The universal cover is an in�nite graph.

For n ≥ 0, consider some non-backtracking path u = a1...a2n+1,
and v = (a1a2)na1.

Assume u, v can be glued at distance < n.

u

v

x ∈ XG

y ∈ Ua1(G )

p

q

The paths p and q have to be equal in the universal cover, which is
impossible.



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 2. The universal cover is an in�nite graph.

For n ≥ 0, consider some non-backtracking path u = a1...a2n+1,
and v = (a1a2)na1.

Assume u, v can be glued at distance < n.

u

v

x ∈ XG

y ∈ Ua1(G )

p

q

The paths p and q have to be equal in the universal cover, which is
impossible.



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 2. The universal cover is an in�nite graph.

For n ≥ 0, consider some non-backtracking path u = a1...a2n+1,
and v = (a1a2)na1.

Assume u, v can be glued at distance < n.

u

v

x ∈ XG

y ∈ Ua1(G )

p

q

The paths p and q have to be equal in the universal cover, which is
impossible.



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 2. The universal cover is an in�nite graph.

For n ≥ 0, consider some non-backtracking path u = a1...a2n+1,
and v = (a1a2)na1.

Assume u, v can be glued at distance < n.

u

v

x ∈ XG

y ∈ Ua1(G )

p

q

The paths p and q have to be equal in the universal cover, which is
impossible.



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 2. The universal cover is an in�nite graph.

For n ≥ 0, consider some non-backtracking path u = a1...a2n+1,
and v = (a1a2)na1.

Assume u, v can be glued at distance < n.

u

v

x ∈ XG

y ∈ Ua1(G )

p

q

The paths p and q have to be equal in the universal cover, which is
impossible.



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 2. The universal cover is an in�nite graph.

For n ≥ 0, consider some non-backtracking path u = a1...a2n+1,
and v = (a1a2)na1.

Assume u, v can be glued at distance < n.

u

v

x ∈ XG y ∈ Ua1(G )

p

q

The paths p and q have to be equal in the universal cover, which is
impossible.



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 2. The universal cover is an in�nite graph.

For n ≥ 0, consider some non-backtracking path u = a1...a2n+1,
and v = (a1a2)na1.

Assume u, v can be glued at distance < n.

u

v

x ∈ XG y ∈ Ua1(G )

p

q

The paths p and q have to be equal in the universal cover, which is
impossible.



Theorem[B.Marcus, N.Chandgotia] : when G is square-free, XG is
Θ(1)-transitive or Θ(n)-transitive.

Proof : 2. The universal cover is an in�nite graph.

For n ≥ 0, consider some non-backtracking path u = a1...a2n+1,
and v = (a1a2)na1.

Assume u, v can be glued at distance < n.

u

v

x ∈ XG y ∈ Ua1(G )

p

q

The paths p and q have to be equal in the universal cover, which is
impossible.



Our results



Pavlov and Schraudner's conjecture

Conjecture[R.Pavlov, M.Schraudner] : Θ(1) and Θ(n) are the only
transitivity classes for Hom shifts.

Counterexample[S.Ganglo�,B.Hellouin,P.Oprocha] : The following
graph K provides a counter-example :

.

Indeed, we proved that XK is Θ(log(n))-transitive.



Pavlov and Schraudner's conjecture

Conjecture[R.Pavlov, M.Schraudner] : Θ(1) and Θ(n) are the only
transitivity classes for Hom shifts.

Counterexample[S.Ganglo�,B.Hellouin,P.Oprocha] : The following
graph K provides a counter-example :

.

Indeed, we proved that XK is Θ(log(n))-transitive.



Proof : 1. XK is at least log(n)-transitive.

c

cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 1. XK is at least log(n)-transitive.

c
cn

without c

?

w

The shift is forced on the remainder of w .

For µc(w) maximal size of a c-block in w : µc(w) ≥ 1

2
µc(cn)− 3.



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ

...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ

...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ

...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

c c c . . . c . . . c c c

c c c . . . ∗ . . . c c c
c c c . . . ∗ . . . c c c

c c c . . . ∗ . . . c c c
σ σ...

c c c . . . t . . . c c c

c ∗ c . . . t ′ . . . c ∗ c
σ σσ



Proof : 2. XK is at most log(n)-transitive.

iii) How to smash down any cycle :

iv) Every path of even length can be transformed into a cycle in a
bounded number of steps.



Proof : 2. XK is at most log(n)-transitive.

iii) How to smash down any cycle :

iv) Every path of even length can be transformed into a cycle in a
bounded number of steps.



Proof : 2. XK is at most log(n)-transitive.

iii) How to smash down any cycle :

iv) Every path of even length can be transformed into a cycle in a
bounded number of steps.



Proof : 2. XK is at most log(n)-transitive.

iii) How to smash down any cycle :

iv) Every path of even length can be transformed into a cycle in a
bounded number of steps.



Proof : 2. XK is at most log(n)-transitive.

iii) How to smash down any cycle :

iv) Every path of even length can be transformed into a cycle in a
bounded number of steps.



Quaternary cover :

Square equivalence for non-backtracking paths :

p

q

p

q

p

q

Quaternary cover : quotient of the universal cover by square
equivalence.



Quaternary cover :

Square equivalence for non-backtracking paths :

p

q

p

q

p

q

Quaternary cover : quotient of the universal cover by square
equivalence.



Some examples of quaternary cover

. . .. . .



Square dismantlability

Decomposability : a cycle is decomposable whenever it is square
equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every
simple cycle is decomposable.

Lemma : the quaternary cover of a graph is always
square-dismantlable.



Square dismantlability

Decomposability : a cycle is decomposable whenever it is square
equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every
simple cycle is decomposable.

Lemma : the quaternary cover of a graph is always
square-dismantlable.



Square dismantlability

Decomposability : a cycle is decomposable whenever it is square
equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every
simple cycle is decomposable.

Lemma : the quaternary cover of a graph is always
square-dismantlable.



Generalization

Theorem[S.Ganglo�,B.Hellouin,P.Oprocha] : Whenever the graph
G is square dismantlable, XG is O(log(n))-transitive.

As a consequence :

Theorem[S.Ganglo�,B.Hellouin,P.Oprocha] : Whenever the graph
G has a �nite quaternary cover, XG is O(log(n))-transitive.
Furthermore :

Theorem[S.Ganglo�,B.Hellouin,P.Oprocha] : Whenever the
quaternary cover of G is in�nite, XG is Θ(n)-transitive.



Generalization

Theorem[S.Ganglo�,B.Hellouin,P.Oprocha] : Whenever the graph
G is square dismantlable, XG is O(log(n))-transitive.

As a consequence :

Theorem[S.Ganglo�,B.Hellouin,P.Oprocha] : Whenever the graph
G has a �nite quaternary cover, XG is O(log(n))-transitive.

Furthermore :

Theorem[S.Ganglo�,B.Hellouin,P.Oprocha] : Whenever the
quaternary cover of G is in�nite, XG is Θ(n)-transitive.



Generalization

Theorem[S.Ganglo�,B.Hellouin,P.Oprocha] : Whenever the graph
G is square dismantlable, XG is O(log(n))-transitive.

As a consequence :

Theorem[S.Ganglo�,B.Hellouin,P.Oprocha] : Whenever the graph
G has a �nite quaternary cover, XG is O(log(n))-transitive.
Furthermore :

Theorem[S.Ganglo�,B.Hellouin,P.Oprocha] : Whenever the
quaternary cover of G is in�nite, XG is Θ(n)-transitive.



Further research



Middle term goal : Prove a similar result for the class of
bidimensional SFT, or tools to produce examples between
Θ(log(n)) and Θ(n).

Long term goal : What happens to the computability of entropy
between Θ(log(n)) and Θ(n) for bidimensional SFT ?

Some natural short-term questions :

1. Is there an algorithm which decides, provided G , if its
quaternary cover is �nite or in�nite ?

2. What happens when G is oriented ?

3. For shifts of �nite type corresponding to graphs G1,G2

isomorphic ?


