Towards a classification of transitivity classes for Hom shifts

S.Gangloff*, joint work with B.Hellouin** and P.Oprocha*

* AGH, Faculty of Applied Mathematics, Kraków, ** Laboratoire de recherche en Informatique, Orsay.
sgangloff@agh.edu.pl ; silvere.gangloff@gmx.com

Motivations

Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^{2}-action of the shift

Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^{2}-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^{2}}$ defined by a finite set of forbidden patterns.

Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^{2}-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^{2}}$ defined by a finite set of forbidden patterns.

Ex: Hard square shift ; $\mathcal{A}=\{0,1\}$

Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^{2}-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^{2}}$ defined by a finite set of forbidden patterns.

Ex: Hard square shift ; $\mathcal{A}=\{0,1\}$

Forbidden patterns | 1 |
| :--- |
| 1 |
| 1 | et $1: 1$.

Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^{2}-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^{2}}$ defined by a finite set of forbidden patterns.

Ex: Hard square shift ; $\mathcal{A}=\{0,1\}$
Forbidden patterns $\left.\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ et 11.

$$
\begin{array}{c:c:c:c:c}
0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 1 \\
\hdashline 0 & 0 & 0 & 1 & 0 \\
\hdashline 1 & 0 & 0 & 0 & 0
\end{array}
$$

Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^{2}-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^{2}}$ defined by a finite set of forbidden patterns.

Ex: Hard square shift ; $\mathcal{A}=\{0,1\}$
Forbidden patterns $\left.\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ et 11.

$$
\begin{array}{c:c:c:c:c}
0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 1 \\
\hdashline 1 & 0 & 0 & 1 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0
\end{array}
$$

Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^{2}-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^{2}}$ defined by a finite set of forbidden patterns.

Ex: Hard square shift ; $\mathcal{A}=\{0,1\}$
Forbidden patterns $\left.\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ et 11.

$$
\begin{array}{c:c:c:c:c}
0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 1 \\
\hdashline 1 & 0 & 1 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0
\end{array}
$$

Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^{2}-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^{2}}$ defined by a finite set of forbidden patterns.

Ex: Hard square shift ; $\mathcal{A}=\{0,1\}$
Forbidden patterns $\left.\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ et 11.

$$
\begin{array}{l:l:l:l:l}
0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & \\
\hdashline 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 1 \\
0 & 1 & & \text { oops } \\
\hdashline 0 & 0 & 1 & 0 & 0 \\
& 0 & & \\
\hdashline 0 & 0 & 0 & 0 & 0
\end{array}
$$

Bidimensional SFT : bidimensional dynamical system corresponding to the \mathbb{Z}^{2}-action of the shift on a subset of $\mathcal{A}^{\mathbb{Z}^{2}}$ defined by a finite set of forbidden patterns.

Ex: Hard square shift ; $\mathcal{A}=\{0,1\}$
Forbidden patterns $\left.\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ et 11.

$$
\begin{array}{c:c:c:c:c}
0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 1 \\
\hdashline 1 & 0 & 1 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0
\end{array}
$$

Entropy and computability :

Let X be a bidimensional SFT.

Entropy and computability :

Let X be a bidimensional SFT.

Entropy: $\inf _{n} \frac{\log \left(N_{n}(X)\right)}{n^{2}}$, where $N_{n}(X)$ is the number of n-square which appear in at least one element of X.

Entropy and computability :

Let X be a bidimensional SFT.

Entropy: $\inf _{n} \frac{\log \left(N_{n}(X)\right)}{n^{2}}$, where $N_{n}(X)$ is the number of n-square which appear in at least one element of X.

Computability : $x \in \mathbb{R}$ is computable when there is an algorithm which approximates x with elements of \mathbb{Q} with arbitrary precision.

A computational 'transition' :
f-Block gluing :

Worldmap :

The question of intermediate gap functions
Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and $\log (n)=o(f(n))$ and $f(n)=o(n)$?

The question of intermediate gap functions
Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and $\log (n)=o(f(n))$ and $f(n)=o(n)$?

Natural idea for $f(n)=\sqrt{n}$ (fails) :

The question of intermediate gap functions
Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and $\log (n)=o(f(n))$ and $f(n)=o(n)$?

Natural idea for $f(n)=\sqrt{n}$ (fails) :

The question of intermediate gap functions
Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and $\log (n)=o(f(n))$ and $f(n)=o(n)$?

Natural idea for $f(n)=\sqrt{n}$ (fails) :

The question of intermediate gap functions
Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and $\log (n)=o(f(n))$ and $f(n)=o(n)$?

Natural idea for $f(n)=\sqrt{n}$ (fails) :

The question of intermediate gap functions
Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and $\log (n)=o(f(n))$ and $f(n)=o(n)$?

Natural idea for $f(n)=\sqrt{n}$ (fails) :

The question of intermediate gap functions
Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and $\log (n)=o(f(n))$ and $f(n)=o(n)$?

Natural idea for $f(n)=\sqrt{n}$ (fails) :

The question of intermediate gap functions
Question[G.,Sablik, also related by M.Hochman] : does there exist some f-block gluing bidimensional SFT with undecidable language and $\log (n)=o(f(n))$ and $f(n)=o(n)$?

Natural idea for $f(n)=\sqrt{n}$ (fails) :

Problem : it is actually linear block gluing.

Homshifts

Homshift : SFT X_{G} whose forbidden patterns are :

where (a, b) not an edge in G (non-oriented simple graph).

Homshift : SFT X_{G} whose forbidden patterns are :

$$
\begin{array}{|c|}
\hline \mathrm{a} \\
\mathrm{~b} \\
, \quad \mathrm{a} \mid \mathrm{b} \\
\hline
\end{array}
$$

where (a, b) not an edge in G (non-oriented simple graph).
The hard square shift is a homshift :

Homshift : SFT X_{G} whose forbidden patterns are :

$$
\begin{array}{|c|}
\hline \mathrm{a} \\
\hline \mathrm{~b} \\
\hline
\end{array}, \quad \mathrm{a} \mid \mathrm{b},
$$

where (a, b) not an edge in G (non-oriented simple graph).
The hard square shift is a homshift :

Interest : symmetries break down undecidability phenomena; in general : the language is decidable, the entropy is computable (Friedland).

What are the possible gap functions for Hom shifts?

What are the possible gap functions for Hom shifts?

Simplifications :

What are the possible gap functions for Hom shifts?

Simplifications :

1. Block gluing \rightarrow Vertical transitivity.

What are the possible gap functions for Hom shifts?

Simplifications :

1. Block gluing \rightarrow Vertical transitivity.

2. Gap functions \rightarrow Classes for the equivalence $f \sim g$ defined by for all n :

$$
c+k f(n) \leq g(n) \leq c^{\prime}+k^{\prime} f(n)
$$

Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are $\Theta(1), \Theta(\log (n))$ and $\Theta(n)$.

Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are $\Theta(1), \Theta(\log (n))$ and $\Theta(n)$.

Proven part: if not $\Theta(n)$ then $O(\log (n))$.

Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are $\Theta(1), \Theta(\log (n))$ and $\Theta(n)$.

Proven part: if not $\Theta(n)$ then $O(\log (n))$.
Builds on tools developped by B.Marcus and N.Chandgotia.

For c vertex, the universal cover $\mathcal{U}_{c}(G)$ of G is the graph s.t. : i) vertices: $c a_{1} \ldots a_{k}, k \geq 0$ without back-tracking ($a b a$) ; ii) edges : $\left(c a_{1} \ldots a_{k+1}, c a_{1} \ldots a_{k}\right)$.

All these graphs are the same up to isomorphism.

For c vertex, the universal cover $\mathcal{U}_{c}(G)$ of G is the graph s.t. : i) vertices: $c a_{1} \ldots a_{k}, k \geq 0$ without back-tracking (aba); ii) edges : $\left(c a_{1} \ldots a_{k+1}, c a_{1} \ldots a_{k}\right)$.

All these graphs are the same up to isomorphism.
Ex:

G

$\mathcal{U}_{c}(G)$

When G is square free, every pair $(c, z), z \in \mathbb{Z}^{2}$ defines a 'natural' function from X_{G} to $X_{\mathcal{U}_{c}(G)}$:

$$
y \in X_{\mathcal{U}_{c}(G)} \quad x \in X_{G}
$$

When G is square free, every pair $(c, z), z \in \mathbb{Z}^{2}$ defines a 'natural' function from X_{G} to $X_{\mathcal{U}_{c}(G)}$:

where p_{a} is a path of smallest length from c to a.

When G is square free, every pair $(c, z), z \in \mathbb{Z}^{2}$ defines a 'natural' function from X_{G} to $X_{\mathcal{U}_{c}(G)}$:

$$
y \in X_{\mathcal{U}_{c}(G)} \quad x \in X_{G}
$$

where p_{a} is a path of smallest length from c to a.

When G is square free, every pair $(c, z), z \in \mathbb{Z}^{2}$ defines a 'natural' function from X_{G} to $X_{\mathcal{U}_{c}(G)}$:

$$
y \in X_{\mathcal{U}_{c}(G)} \quad x \in X_{G}
$$

where p_{a} is a path of smallest length from c to a.

When G is square free, every pair $(c, z), z \in \mathbb{Z}^{2}$ defines a 'natural' function from X_{G} to $X_{\mathcal{U}_{c}(G)}$:

$$
y \in X_{\mathcal{U}_{c}(G)} \quad x \in X_{G}
$$

where p_{a} is a path of smallest length from c to a.

When G is square free, every pair $(c, z), z \in \mathbb{Z}^{2}$ defines a 'natural' function from X_{G} to $X_{\mathcal{U}_{c}(G)}$:

$$
y \in X_{\mathcal{U}_{c}(G)} \quad x \in X_{G}
$$

where p_{a} is a path of smallest length from c to a.

When G is square free, every pair $(c, z), z \in \mathbb{Z}^{2}$ defines a 'natural' function from X_{G} to $X_{\mathcal{U}_{c}(G)}$:

$$
y \in X_{\mathcal{U}_{c}(G)} \quad x \in X_{G}
$$

where p_{a} is a path of smallest length from c to a.

When G is square free, every pair $(c, z), z \in \mathbb{Z}^{2}$ defines a 'natural' function from X_{G} to $X_{\mathcal{U}_{c}(G)}$:

$$
y \in X_{\mathcal{U}_{c}(G)} \quad x \in X_{G}
$$

where p_{a} is a path of smallest length from c to a.

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.
\square

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.
\square
\square

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.
\square
\square
\square

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.
\square

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.
\square

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected. For G connected it is at most $O(n)$-transitive.

Proof : every infinite row can appear below to its right shift.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.

$$
\mathrm{a}|\mathrm{~b}| \mathrm{a}|\mathrm{c}| \mathrm{d} \mid \mathrm{c} \mathrm{e}
$$

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.

$$
\mathrm{a}|\mathrm{~b}| \mathrm{a}|c| \mathrm{d} \mid \mathrm{c} \cdot \mathrm{e}
$$

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.

$$
\begin{array}{|l|l|l|l|l|l|}
\hline a & b & a & d & c & e \\
a & b & a & c & a & c \\
\hline
\end{array}
$$

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G is a finite tree.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.
For $n \geq 0$, consider some non-backtracking path $u=a_{1} \ldots a_{2 n+1}$, and $v=\left(a_{1} a_{2}\right)^{n} a_{1}$.

Theorem[B.Marcus, N.Chandgotia]: when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.
For $n \geq 0$, consider some non-backtracking path $u=a_{1} \ldots a_{2 n+1}$, and $v=\left(a_{1} a_{2}\right)^{n} a_{1}$.

Assume u, v can be glued at distance $<n$.

Theorem[B.Marcus, N.Chandgotia]: when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.
For $n \geq 0$, consider some non-backtracking path $u=a_{1} \ldots a_{2 n+1}$, and $v=\left(a_{1} a_{2}\right)^{n} a_{1}$.

Assume u, v can be glued at distance $<n$.
\square

$$
x \in X_{G}
$$

Theorem[B.Marcus, N.Chandgotia]: when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.
For $n \geq 0$, consider some non-backtracking path $u=a_{1} \ldots a_{2 n+1}$, and $v=\left(a_{1} a_{2}\right)^{n} a_{1}$.

Assume u, v can be glued at distance $<n$.

$$
x \in X_{G}
$$

Theorem[B.Marcus, N.Chandgotia]: when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.
For $n \geq 0$, consider some non-backtracking path $u=a_{1} \ldots a_{2 n+1}$, and $v=\left(a_{1} a_{2}\right)^{n} a_{1}$.

Assume u, v can be glued at distance $<n$.

Theorem[B.Marcus, N.Chandgotia]: when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.
For $n \geq 0$, consider some non-backtracking path $u=a_{1} \ldots a_{2 n+1}$, and $v=\left(a_{1} a_{2}\right)^{n} a_{1}$.

Assume u, v can be glued at distance $<n$.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X_{G} is $\Theta(1)$-transitive or $\Theta(n)$-transitive.

Proof: 2. The universal cover is an infinite graph.
For $n \geq 0$, consider some non-backtracking path $u=a_{1} \ldots a_{2 n+1}$, and $v=\left(a_{1} a_{2}\right)^{n} a_{1}$.

Assume u, v can be glued at distance $<n$.

The paths p and q have to be equal in the universal cover, which is impossible.

Our results

Pavlov and Schraudner's conjecture

Conjecture[R.Pavlov, M.Schraudner] : $\Theta(1)$ and $\Theta(n)$ are the only transitivity classes for Hom shifts.

Pavlov and Schraudner's conjecture

Conjecture[R.Pavlov, M.Schraudner] : $\Theta(1)$ and $\Theta(n)$ are the only transitivity classes for Hom shifts.

Counterexample[S.Gangloff,B.Hellouin,P.Oprocha] : The following graph K provides a counter-example :

Indeed, we proved that X_{K} is $\Theta(\log (n))$-transitive.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

Proof: 1. X_{K} is at least $\log (n)$-transitive.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

The shift is forced on the remainder of w.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

The shift is forced on the remainder of w.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

The shift is forced on the remainder of w.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

The shift is forced on the remainder of w.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

The shift is forced on the remainder of w.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

The shift is forced on the remainder of w.

Proof: 1. X_{K} is at least $\log (n)$-transitive.

without c

The shift is forced on the remainder of w.

For $\mu_{c}(w)$ maximal size of a c-block in $w: \mu_{c}(w) \geq \frac{1}{2} \mu_{c}\left(c^{n}\right)-3$.

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof : 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof : 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
i) Procedure to smash down a simple cycle in K :

Expansion of backtracking parts :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle:
c c c...c...c c c

Proof : 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle:
$C \quad C \quad \cdots C \cdots C \quad C$

$$
c \quad c \quad \cdots \cdots * \cdots c \quad c \quad c
$$

Proof : 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle:

Proof: 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle:

Proof: 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle:

$\mathrm{C} \underset{\sigma}{\mathrm{C} \mathrm{C} \cdots} \underset{\sigma}{\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{C}} \mathrm{C}$

Proof: 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle:

Proof: 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle:

$\mathrm{C} \underset{\sigma}{\mathrm{C} \cdots} \underset{\sigma}{\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{C}} \mathrm{C}$

Proof: 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle:

Proof: 2. X_{K} is at most $\log (n)$-transitive.
ii) How to smash down an iterate of a cycle:

Proof: 2. X_{K} is at most $\log (n)$-transitive.
iii) How to smash down any cycle :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
iii) How to smash down any cycle :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
iii) How to smash down any cycle :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
iii) How to smash down any cycle :

Proof: 2. X_{K} is at most $\log (n)$-transitive.
iii) How to smash down any cycle :

iv) Every path of even length can be transformed into a cycle in a bounded number of steps.

Quaternary cover:

Square equivalence for non-backtracking paths:

Quaternary cover:

Square equivalence for non-backtracking paths:

Quaternary cover: quotient of the universal cover by square equivalence.

Some examples of quaternary cover

Square dismantlability

Decomposability : a cycle is decomposable whenever it is square equivalent to a trivial cycle.

Square dismantlability

Decomposability : a cycle is decomposable whenever it is square equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every simple cycle is decomposable.

Square dismantlability

Decomposability : a cycle is decomposable whenever it is square equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every simple cycle is decomposable.

Lemma : the quaternary cover of a graph is always square-dismantlable.

Generalization

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph G is square dismantlable, X_{G} is $O(\log (n))$-transitive.

Generalization

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph G is square dismantlable, X_{G} is $O(\log (n))$-transitive.

As a consequence :
Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph G has a finite quaternary cover, X_{G} is $O(\log (n))$-transitive.

Generalization

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph G is square dismantlable, X_{G} is $O(\log (n))$-transitive.

As a consequence :
Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph G has a finite quaternary cover, X_{G} is $O(\log (n))$-transitive. Furthermore :

Theorem[S. Gangloff,B.Hellouin,P.Oprocha] : Whenever the quaternary cover of G is infinite, X_{G} is $\Theta(n)$-transitive.

Further research

Middle term goal : Prove a similar result for the class of bidimensional SFT, or tools to produce examples between $\Theta(\log (n))$ and $\Theta(n)$.

Long term goal : What happens to the computability of entropy between $\Theta(\log (n))$ and $\Theta(n)$ for bidimensional SFT?

Some natural short-term questions :

1. Is there an algorithm which decides, provided G, if its quaternary cover is finite or infinite?
2. What happens when G is oriented?
3. For shifts of finite type corresponding to graphs G_{1}, G_{2} isomorphic?
