Towards a classification of transitivity classes for
Hom shifts

S.Gangloff*, joint work with B.Hellouin** and P.Oprocha*

* AGH, Faculty of Applied Mathematics, Krakéw, ** Laboratoire de
recherche en Informatique, Orsay.

sgangloff@agh.edu.pl; silvere.gangloff@gmx.com

Motivations

Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift

Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of A%’
defined by a finite set of forbidden patterns.

Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of A%’
defined by a finite set of forbidden patterns.

Ex : Hard square shift; A= {0,1}

Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of A%’
defined by a finite set of forbidden patterns.

Ex : Hard square shift; A= {0,1}

1
Forbidden patterns et [11].

Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of A%’
defined by a finite set of forbidden patterns.

Ex : Hard square shift; A= {0,1}

1
Forbidden patterns et [11].

0'0/0'0!0
0'0'0'1'0
01010011
01010110
110101010

Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of A%’
defined by a finite set of forbidden patterns.

Ex : Hard square shift; A= {0,1}

1
Forbidden patterns et [11].

0'0/0'0!0
0'0'0'1'0
01010011
110101110
010101010

Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of A%’
defined by a finite set of forbidden patterns.

Ex : Hard square shift; A= {0,1}

1
Forbidden patterns et [11].

0'0/0'0!0
0'0'0'1'0
01010011
110111010
010101010

Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of A%’
defined by a finite set of forbidden patterns.

Ex : Hard square shift; A= {0,1}

1
Forbidden patterns et [11].

0'0/0'0!0
0'0'0'0'0
01001111 0o0ps
110111010
010101010

Bidimensional SFT : bidimensional dynamical system
corresponding to the Z2-action of the shift on a subset of A%’
defined by a finite set of forbidden patterns.

Ex : Hard square shift; A= {0,1}

1
Forbidden patterns et [11].

0'0/0'0!0
0'0'0'1'0
01010011
110111010
010101010

Entropy and computability :

Let X be a bidimensional SFT.

Entropy and computability :

Let X be a bidimensional SFT.

Entropy : inf, W, where N,(X) is the number of n-square
which appear in at least one element of X.

Entropy and computability :

Let X be a bidimensional SFT.

Entropy : inf, I%(wa, where N,(X) is the number of n-square
which appear in at least one element of X.

Computability : x € R is computable when there is an algorithm
which approximates x with elements of Q with arbitrary precision.

A computational ’'transition’ :

f-Block gluing :

g &

n f(n)

Worldmap :

No man’s land

O(n) [G.Sablik]

[G.,Hellouin] o(log(n))

Swamp of

4 - undecidability
Algorithmic computability — 1 T)
domain [Hochman,Meyerovitch]

Liminal area

e

1t
L

FTilt

The question of intermediate gap functions

Question|[G.,Sablik, also related by M.Hochman] : does there exist
some f-block gluing bidimensional SFT with undecidable language

and log(n) = o(f(n)) and f(n) = o(n)?

The question of intermediate gap functions

Question|[G.,Sablik, also related by M.Hochman] : does there exist
some f-block gluing bidimensional SFT with undecidable language
and log(n) = o(f(n)) and f(n) = o(n)?

Natural idea for f(n) = /n (fails) :

The question of intermediate gap functions

Question|[G.,Sablik, also related by M.Hochman] : does there exist
some f-block gluing bidimensional SFT with undecidable language
and log(n) = o(f(n)) and f(n) = o(n)?

Natural idea for f(n) = /n (fails) :

The question of intermediate gap functions

Question|[G.,Sablik, also related by M.Hochman] : does there exist
some f-block gluing bidimensional SFT with undecidable language
and log(n) = o(f(n)) and f(n) = o(n)?

Natural idea for f(n) = /n (fails) :

The question of intermediate gap functions

Question|[G.,Sablik, also related by M.Hochman] : does there exist
some f-block gluing bidimensional SFT with undecidable language
and log(n) = o(f(n)) and f(n) = o(n)?

Natural idea for f(n) = /n (fails) :

The question of intermediate gap functions

Question|[G.,Sablik, also related by M.Hochman] : does there exist
some f-block gluing bidimensional SFT with undecidable language
and log(n) = o(f(n)) and f(n) = o(n)?

Natural idea for f(n) = /n (fails) :

The question of intermediate gap functions

Question|[G.,Sablik, also related by M.Hochman] : does there exist
some f-block gluing bidimensional SFT with undecidable language
and log(n) = o(f(n)) and f(n) = o(n)?

Natural idea for f(n) = /n (fails) :

The question of intermediate gap functions

Question|[G.,Sablik, also related by M.Hochman] : does there exist
some f-block gluing bidimensional SFT with undecidable language
and log(n) = o(f(n)) and f(n) = o(n)?

Natural idea for f(n) = /n (fails) :

Problem : it is actually linear block gluing.

Homshifts

Homshift : SFT Xg whose forbidden patterns are :

))

where (a, b) not an edge in G (non-oriented simple graph).

Homshift : SFT Xg whose forbidden patterns are :

a
aan)
where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift :

PSS

(@ ©

Homshift : SFT Xg whose forbidden patterns are :

a
aan)
where (a, b) not an edge in G (non-oriented simple graph).

The hard square shift is a homshift :
C PSS

Interest : symmetries break down undecidability phenomena; in
general : the language is decidable, the entropy is computable
(Friedland).

What are the possible gap functions for Hom shifts ?

What are the possible gap functions for Hom shifts ?

Simplifications :

What are the possible gap functions for Hom shifts ?
Simplifications :

1. Block gluing — Vertical transitivity.
1
]

What are the possible gap functions for Hom shifts ?
Simplifications :
1. Block gluing — Vertical transitivity.

1

]

2. Gap functions — Classes for the equivalence f ~ g defined by
forall n:
c+ kf(n) < g(n) < + K'f(n).

Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are

©(1),0O(log(n)) and ©(n).

Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are

©(1),0O(log(n)) and ©(n).

Proven part : if not ©(n) then O(log(n)).

Expected result :

Theorem : The transitivity classes for bidimensional Homshifts are

©(1),0O(log(n)) and ©(n).
Proven part : if not ©(n) then O(log(n)).

Builds on tools developped by B.Marcus and N.Chandgotia.

For ¢ vertex, the universal cover U (G) of G is the graph s.t. : i)
vertices : caj...ax, k > 0 without back-tracking (aba); ii) edges :

(car...aky1,cai...ax).

All these graphs are the same up to isomorphism.

For ¢ vertex, the universal cover U (G) of G is the graph s.t. : i)
vertices : caj...ax, k > 0 without back-tracking (aba); ii) edges :

(car...aky1,cai...ax).
All these graphs are the same up to isomorphism.

Ex :

G Uc(G)

;; cab ca ¢ c¢cb cha

When G is square free, every pair (c,z), z € Z? defines a 'natural’
function from Xg to Xy (¢) :

¥ € Xu(6) x € Xg

When G is square free, every pair (c,z), z € Z? defines a 'natural’
function from Xg to Xy (¢) :

¥ € Xu(6) x € Xg

Pa a

]

where p, is a path of smallest length from ¢ to a.

When G is square free, every pair (c,z), z € Z? defines a 'natural’
function from Xg to Xy (¢) :

¥ € Xu(6) x € Xg

]

where p, is a path of smallest length from ¢ to a.

When G is square free, every pair (c,z), z € Z? defines a 'natural’
function from Xg to Xy (¢) :

¥ € Xu(6) x € Xg
[]

|-

]

where p, is a path of smallest length from ¢ to a.

When G is square free, every pair (c,z), z € Z? defines a 'natural’
function from Xg to Xy (¢) :

¥ € Xu(6) x € Xg
l

I

]

where p, is a path of smallest length from ¢ to a.

When G is square free, every pair (c,z), z € Z? defines a 'natural’
function from Xg to Xy (¢) :

¥ € Xu(6) x € Xg
l

I

]

where p, is a path of smallest length from ¢ to a.

When G is square free, every pair (c,z), z € Z? defines a 'natural’
function from Xg to Xy (¢) :

¥ € Xu(6) x € Xg

]

where p, is a path of smallest length from ¢ to a.

When G is square free, every pair (c,z), z € Z? defines a 'natural’
function from Xg to Xy (¢) :

¥ € Xu(6) x € Xg

]

where p, is a path of smallest length from ¢ to a.

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

[]

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

[]

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

[]

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

[]

S

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

[]

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

1
llul

(T
l‘—H l:u—TH
KK—H i%J

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

lVl [u]

T
l‘—H l:u—TH
KK—H i%J

Lemma : a Hom shift is transitive if and only if G is connected.
For G connected it is at most O(n)-transitive.

Proof : every infinite row can appear below to its right shift.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X¢ is
©(1)-transitive or ©(n)-transitive.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X¢ is
©(1)-transitive or ©(n)-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G
is a finite tree.

b
a<€d
¢ e

[alblalcId]c]e]

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X¢ is
©(1)-transitive or ©(n)-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G
is a finite tree.

b
a<€d
¢ e

[alblalcId]c]e]

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X¢ is
©(1)-transitive or ©(n)-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G

is a finite tree.
[a]blalc]d]c]€]
[a[blalcalc]€]

b
a<€d
¢ e

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X¢ is
©(1)-transitive or ©(n)-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G
is a finite tree.

b
a<€d
¢ e

[a]blalc]d]c[e
[alblalc]alcle
blalclalc]a]

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X¢ is
©(1)-transitive or ©(n)-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G
is a finite tree.

b
a<€d
¢ e

[ab
El

[Vl onl]
[N eniille]

olw|ord

V(O|L|O

o w| 0o

DO|D
[«]

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X¢ is
©(1)-transitive or ©(n)-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G
is a finite tree.

Q

a

c d l
e

(o)
[V ouj]
oljvo]v|o

Low O
olwO(wo
WIo(W|O|D
olow(Ofm

[] on)

aJ

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X¢ is
©(1)-transitive or ©(n)-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G
is a finite tree.

[o]

[V ouj]
NaN=RR
olvoo[ol]

aJ

[] on)

[exisllelidlle]
olvowO|m

VoW O|®

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X¢ is
©(1)-transitive or ©(n)-transitive.

Proof : 1. The universal cover is a finite graph. This implies that G
is a finite tree.

[o]
voo

aJ

VoW O|®
[] on)

[Meaid=aliie] ="
onitleonidlilelidle]

LOoVO(L(O|D

3]
K\Os_
[oN=N
o
o
Cloolvo|wio

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X is
©(1)-transitive or ©(n)-transitive.

Proof : 2. The universal cover is an infinite graph.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X is
©(1)-transitive or ©(n)-transitive.

Proof : 2. The universal cover is an infinite graph.

For n > 0, consider some non-backtracking path v = a;...ap511,
and v = (a1a2)"a;.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X is
©(1)-transitive or ©(n)-transitive.

Proof : 2. The universal cover is an infinite graph.

For n > 0, consider some non-backtracking path v = a;...ap511,
and v = (a1a2)"a;.

Assume u, v can be glued at distance < n.

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X is
©(1)-transitive or ©(n)-transitive.

Proof : 2. The universal cover is an infinite graph.

For n > 0, consider some non-backtracking path v = a;...ap511,
and v = (a1a2)"a;.

Assume u, v can be glued at distance < n.

[u]

x € X¢g

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X is
©(1)-transitive or ©(n)-transitive.

Proof : 2. The universal cover is an infinite graph.

For n > 0, consider some non-backtracking path v = a;...ap511,
and v = (a1a2)"a;.

Assume u, v can be glued at distance < n.

x € X¢g

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X is
©(1)-transitive or ©(n)-transitive.

Proof : 2. The universal cover is an infinite graph.

For n > 0, consider some non-backtracking path v = a;...ap511,
and v = (a1a2)"a;.

Assume u, v can be glued at distance < n.

p

—_—

x € Xg y € Uy (G)

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X is
©(1)-transitive or ©(n)-transitive.

Proof : 2. The universal cover is an infinite graph.

For n > 0, consider some non-backtracking path v = a;...ap511,
and v = (a1a2)"a;.

Assume u, v can be glued at distance < n.

p

—_—

x € Xg y € Uy (G)

Theorem[B.Marcus, N.Chandgotia] : when G is square-free, X is
©(1)-transitive or ©(n)-transitive.

Proof : 2. The universal cover is an infinite graph.

For n > 0, consider some non-backtracking path v = a;...ap511,
and v = (a1a2)"a;.

Assume u, v can be glued at distance < n.

p

—_—

q
x € Xg y € Uy (G)

The paths p and g have to be equal in the universal cover, which is
impossible.

Our results

Pavlov and Schraudner’s conjecture

Conjecture[R.Pavlov, M.Schraudner] : ©(1) and ©(n) are the only
transitivity classes for Hom shifts.

Pavlov and Schraudner’s conjecture

Conjecture[R.Pavlov, M.Schraudner] : ©(1) and ©(n) are the only
transitivity classes for Hom shifts.

Counterexample[S.Gangloff,B.Hellouin,P.Oprocha] : The following
graph K provides a counter-example :

Indeed, we proved that Xy is ©(log(n))-transitive.

Proof : 1. Xk is at least log(n)-transitive.

Proof : 1. Xk is at least log(n)-transitive.

™]

Proof : 1. Xk is at least log(n)-transitive.

G] without ¢

Proof : 1. Xk is at least log(n)-transitive.

G] without ¢

Proof : 1. Xk is at least log(n)-transitive.

G] without ¢

Proof : 1. Xk is at least log(n)-transitive.

G] without ¢

Proof : 1. Xk is at least log(n)-transitive.

c
Co___.w____!
Co ! without ¢

The shift is forced on the remainder of w.

Proof : 1. Xk is at least log(n)-transitive.

without ¢

Proof : 1. Xk is at least log(n)-transitive.

without ¢

Proof : 1. Xk is at least log(n)-transitive.

c
Co___.w____!
£
Co ! without ¢

Proof : 1. Xk is at least log(n)-transitive.

C
[U
fmmm e m e m oo
& S Lo m e e e e — -

The shift is forced on the remainder of w.

without ¢

Proof : 1. Xk is at least log(n)-transitive.

c
Co___.w____!
%
Co ! without ¢

Proof : 1. Xk is at least log(n)-transitive.

c
Co___.w____!
Co ! without ¢

For yic(w) maximal size of a c-block in w : pic(w) > Suc(c") — 3.

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

\

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

N\

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

N\

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

—

Expansion of backtracking parts :

————
\
-————,

—_—,———

Proof : 2. Xk is at most log(n)-transitive.

i) Procedure to smash down a simple cycle in K :

—

Expansion of backtracking parts :

\
-~

——

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

ccc---Cc---CCC
e b ‘

, ccc * ccc !

1C C C * ccc |

| o e e - 3 —
ccc ¥...C C C

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

Proof : 2. Xk is at most log(n)-transitive.

ii) How to smash down an iterate of a cycle :

ccc---t---CccCcC
C x C---t---C x C
— < - > — <

Proof : 2. Xk is at most log(n)-transitive.

iii) How to smash down any cycle :

Proof : 2. Xk is at most log(n)-transitive.

iii) How to smash down any cycle :

Proof : 2. Xk is at most log(n)-transitive.

iii) How to smash down any cycle :

O

Proof : 2. Xk is at most log(n)-transitive.

iii) How to smash down any cycle :

XX ©

Proof : 2. Xk is at most log(n)-transitive.

iii) How to smash down any cycle :

XX ©

iv) Every path of even length can be transformed into a cycle in a
bounded number of steps.

Quaternary cover :

Square equivalence for non-backtracking paths :

q , .
q
AN AL

Quaternary cover :

Square equivalence for non-backtracking paths :

q , ,
C / a q
, P , . . 25

Quaternary cover : quotient of the universal cover by square
equivalence.

Some examples of quaternary cover

1] [T]

X SEE

Square dismantlability

Decomposability : a cycle is decomposable whenever it is square
equivalent to a trivial cycle.

Square dismantlability
Decomposability : a cycle is decomposable whenever it is square
equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every
simple cycle is decomposable.

Square dismantlability
Decomposability : a cycle is decomposable whenever it is square
equivalent to a trivial cycle.

Dismantlability : a graph G is square-dismantlable whenever every
simple cycle is decomposable.

Lemma : the quaternary cover of a graph is always
square-dismantlable.

Generalization

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph
G is square dismantlable, X¢ is O(log(n))-transitive.

Generalization

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph
G is square dismantlable, X¢ is O(log(n))-transitive.

As a consequence :

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph
G has a finite quaternary cover, X¢ is O(log(n))-transitive.

Generalization

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph
G is square dismantlable, X¢ is O(log(n))-transitive.

As a consequence :

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the graph
G has a finite quaternary cover, X¢ is O(log(n))-transitive.
Furthermore :

Theorem[S.Gangloff,B.Hellouin,P.Oprocha] : Whenever the
quaternary cover of G is infinite, X¢ is ©(n)-transitive.

Further research

Middle term goal : Prove a similar result for the class of
bidimensional SFT, or tools to produce examples between

©(log(n)) and ©(n).

Long term goal : What happens to the computability of entropy
between ©(log(n)) and ©(n) for bidimensional SFT?

Some natural short-term questions :

1. Is there an algorithm which decides, provided G, if its
quaternary cover is finite or infinite ?

2. What happens when G is oriented ?

3. For shifts of finite type corresponding to graphs Gy, G
isomorphic ?

